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General transformation matrix from the base of the robot to the
end-effector
Transformation matrix from the frame n-1ton

Translation matrix

Transformation matrix for the pure rotation about x
Transformation matrix for the pure rotation about y
Transformation matrix for the pure rotation about z

Roll-pitch-yaw transformation

sin(§), sin(6, ), sin(&), sin(6, )

cos(8), cos(8, ), cos(8,), cos(6,)

Position and orientation matrix of the end-effector

Linear velocity matrix

Joint variables, angular velocity and angular change to the joint
variables

Angular velocity matrix, acceleration constant

Cartesian co-ordinates of the end-effector

Orientation values of the end-effector

Function establishing the relationship between joint variables
and the position and orientation of the end-effector

Jacobian matrix

Jacobian matrix of the augmented matrix

Jacobian matrix of the ith manipulator variable

Jacobian matrices with respect to assigned velocity vector for
the first and second obstacles

Inverse, generalised inverse and transpose of the Jacobian matrix
Singularity robust pseudoinverse

Position vector of nth frame

Unit vectors of each frame with respect to the base frame
Integer value, surface normal at the boundary and number of the

control points
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Dimension space of the end-effector

Task space dimension and parameter of the line equation
Symmetric and positive definite weighting matrices
Damping factor and the direction of the current point in the
potential field

Unite matrix

Arbitrary vector

Gradient of the function h(8)

Scalar coefficient, integer value and iteration number
Specific definition of the vector z

Distance between the ith manipulator section and the jth obstacle

Measure for the thickness of the links and the window

s OO o Gy Weighting constants and functions

First and second manipulator variables

Manipulability measure given as a potential function

Goal presented by an attractive pole

Set of parameters describing the end-effector co-ordinates and
orientation

Obstacles are presented by repulsive surfaces

Constant gain

Limit distance of the potential field

Shortest distance to the obstacle

Harmonic function

Laplacian of ¢

Domain, boundary of Q

Closed boundary of an arbitrary region I = Q

Area element on (J 1)

Potential functions representing Dirichlet boundary conditions
Potential functions representing Neumann boundary conditions
Solution using the Dirichlet conditions

Solution using the Neumann condition
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h Grid spacing

/i Virtual torque

abc,duv Coefficients in line and ellipse equations

PO, Yp), e(xe, ye) Start and end point of the link

S(xys ¥ ) k(X5 ¥ ) » m(Xms Ym), 1Ky Y) Intersections points

pk, ps, pe Vectors establishing intersection between links and margin circles
hm, hn Vectors by which it can be decided where the link is to be moved
A6, kth link of the manipulator which is moved a fixed amount A6
As, Maximum displacement of the end point of the nth link

L Straight line from the start point of kth link to the end point of
nth [, length of each line drawn from each u; value to the link

A6, nth link angular displacement backwards

Lioslc Link length and physically possible maximum link length

I Index value

Jor s Do f,,y_l, fy,,  Field values at by-1, by+1, by-1, by+1 for the point b(by,by)

u Parameter of B-spline curve segment equation
p;(u) B-spline curve segment equation for i curve segment
,( Matrix of parameter u for B-spline curve segment equation
M, Matrix of coefficients for B-spline curve segment equation
| Matrix of control points for B-spline curve segment equation
Amin Minimum distance from a given point to a curve segment
p“ Tangent vector at a given point p
b(by,by) Point at the end of each link used to specify the minimum distance
1(1) ith link vector
u; ith point on the curve segment
{8 Minimum distance from the point b(b.,by) on the link
c(eycy), d(dydy) Points on the curve segment used to specify the minimum
distance
Ue, Ug Parameter values between the points c(cyc,) and d(d,.dy)
U kth parameter value on the curve segment
L Distance between the proximal end of the link and the end of
each line on the curve
Blim Limit value on the already-determined angular change
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d(d,.d,) Point on the curve specifying the direction of angular change
U Parameter value added to existing value while initialising the
links

XVI



CONTENTS

1 INTRODUCTION 1
1.1 Motion planning for redundant manipulators 4
1.1.1 Redundancy resolution 4
1.1.2 Path planning 6
1.2 Book objectives 8
1.3 Structure of the book 9

2 BACKGROUND AND REVIEW OF KINEMATIC CONTROL OF REDUNDANT

MANIPULATORS AT LOW LEVEL; REDUNDANCY RESOLUTION 12
2.1 Introduction 12
2.2 Definition of redundancy as used in robotics 13
2.2.1 Redundancy in the literature 13
2.2.2 Discussion on definitions 15
2.3 Redundancy resolution applied to obstacle avoidance 18
2.3.1 Generalised inverses 18
2.3.1.1 Pseudoinverse (the Moor-Penrose generalised inverse) 18

2.3.1.2 Generalised Inverse from a full-rank sub matrix of the Jacobian matrix 19

2.3.1.3 Weighted pseudoinverse 19
2.3.1.4 The damped least-squares generalised inverse 19
2.3.2 Solutions to inverse kinematics of an underdetermined system 20
2.3.2.1 Gradient Projection Technique 20
2.3.2.2 Task priority technique 24
2.3.2.3 Extended Jacobian Technique 25

2.4 Conclusions 27

11



3 MOTION PLANNING 31
3.1 Introduction 31
3.2 Path planning for mobile robots related to path planning for redundant
manipulators 33
3.3 Object representation and search techniques 34
3.4 Configuration space (C-Space) representation 35
3.5 Roadmaps (retractions, skeleton or highway approach) 37
3.6 Cell decomposition 38
3.7 Potential field technique 39
3.7.1 Numerical potential fields 41
3.7.1.1 Distance transforms 41
3.7.1.2 Harmonic potential functions 43
3.8 Conclusions 48
4 MOTION PLANNING FOR REDUNDANT MANIPULATORS 57
4.1 Introduction 57
4.2 Roadmaps (retractions, skeleton or highway approach) 57
4.2.1 Probabilistic roadmap 57
4.2.1.1 Criticism of the algorithm 58
4.2.2 Kinematic roadmap 59
4.2.2.1 Criticism of the algorithm 59
4.2.3 Search planes 59
4.2.3.1 Criticism of the algorithm 60
4.3 Cell decomposition 60
4.3.1 Swan’s neck 60
4.3.1.1 Criticism of the algorithm 60
4.4 Potential field technique 61
4.4.1 Numerical potential fields in C-space 61
4.4.1.1 Criticism of the algorithm 62
4.4.2 Virtual springs 62
4.4.2.1 Criticism of the algorithm 63



4.4.3 Combination of local and global methods
4.4.3.1 Criticism of the algorithm

4.4.4 Settling Algorithm
4.4.4.1 Criticism of the algorithm

4.5 Planning of self-control of redundant manipulators

4.5.1 Sequential search
4.5.1.1 Criticism of the algorithm

4.5.2 Penalty functions
4.5.2.1 Criticism of the algorithm

4.5.3 Non-rigid links
4.5.3.1 Criticism of the algorithm

4.5.4 Tractrix motion

4.5.4.1 Criticism of the algorithm

4.5.5 Backbone curve
4.5.5.1 Criticism of the algorithm

4.5.6 Posture space

4.5.6.1 Criticism of the algorithm

4.6 Comparison of Gradient Projection Technique with Settling Technique using
numerical potential fields for controlling highly redundant robots

4.6.1 Obstacle avoidance using Gradient Projection Technique

4.6.2 Computer simulations
4.6.3 Limitations of Gradient Projection Technique

4.7 Conclusions

g R

66

66
67

67
68

68
68

69
69

70
70

71
71

71

Ve

73

74

75

5 SOFT-CONTACT REPULSION ALGORITHM FOR OBSTACLE AVOIDANCE FOR

REDUNDANT MANIPULATORS 81
5.1 Introduction 81
5.2 Overview 81
5.3 Potential field technique 82
5.3.1 Harmonic potential fields 82
5.3.2 Collision avoidance using potential field technique 83



5.4 Enhanced collision avoidance 84
5.4.1 Intersection between link and obstacle 84
5.4.2 Detecting intersections 85
5.4.3 Interaction between links 87

5.5 Computer simulations 88
5.5.1 7 link planar manipulator 88
5.5.2 6 link planar manipulator 89
5.5.3 12 link planar manipulator 89

5.6 Discussion 89
5.6.1 Intersections proximal to the joint 89
5.6.2 Double intersections 90
5.6.3 Comparison with other techniques: benchmark environment 90
5.6.4 Comparison of Soft-Contact Repulsion Algorithm with two other algorithm 92
5.6.5 Physical implementation 93
5.6.6 Dynamic environments 94

5.7 Conclusions 94

6 PATH FOLLOWING ALGORITHM FOR HIGHLY REDUNDANT MANIPULATORS 112

6.1 Introduction 112

6.2 Overview 113

6.3 Simple path following algorithms 114
6.3.1 A simple algorithm for following straight lines 114
6.3.2 A simple algorithm for following B-spline curve segments 115

6.3.2.1 B-spline curves 115
6.3.2.2 Minimum distance from a point to a curve segment 117

6.4 A sophisticated algorithm for following B-spline curve segments 118
6.4.1 Problem statement 118
6.4.2 Establishing the relationship between the link and the curve segment 120
6.4.3 Control strategy 121

VI



6.4.3.1 Same Sense mode 122

6.4.3.2 Opposite Sense mode 124

6.4.3.3 Switch mode 125
6.4.3.4 Propagation of the links 125

6.5 Computer simulations 127
6.5.1 First path 127
6.5.1.1 A 30 link planar manipulator, link length of 120 127
6.5.1.2 A 30 link planar manipulator, link length of 80 128

6.5.1.3 A 70 link planar manipulator, link length of 50 128

6.5.2 Second Path 128
6.5.2.1 A 30 link planar manipulator, link length of 80 128

6.5.2.2 A 50 link planar manipulator, link length of 50 129

6.5.2.3 A 70 link planar manipulator, link length of 30 129

6.5.3 Comparison of Path Following Algorithm with two other algorithms 130
6.6 Discussion 131
6.7 Conclusions 134
7 CONCLUSIONS 173
8 FUTURE WORK 178

8.1 Approximating the path by means of b-splines for path following algorithm 178

8.2 Obstacle avoidance with reversing 178
8.3 Propagation of the links 179
8.4 Obstacle avoidance with moving obstacles 179
A. APPENDIX: BASIC KINEMATICS OF MANIPULATORS 186
A.1 Introduction 186

A.2 Co-ordinate frames and transformation matrices for a general manipulator 186

A.2.1 D & H (Denavit and Hartenberg) co-ordinate frames
A.2.2 Direct kinematics

A.2.3 Inverse kinematics

vl

189

189

190



A.3 Example 1: Kinematics of two link spherical manipulator with two DOF for

each link 191
A.3. 1 Direct kinematics of example 1 191
A.3. 2 Inverse kinematics of example 1 192
A.3. 3 Numerical evaluation of example 1 194

A.4 Example 2: Kinematics of four link spherical manipulator with two DOF for

each link 194
A.4.1 Direct kinematics of example 2 194
A.4.2 Inverse kinematics of example 2 197

A.5 Clearer definitions of redundancy 197

A.6 Jacobian matrix of two link spherical manipulator with two DOF for each link202

A.6.1 Numerical evaluation 206
A.7 Singularities 207
A.8 Jacobian matrix of five link planar manipulator with one DOF for each link

using Gradient Projection Technique 208

A.8.1 Numerical evaluation 209

REFERENCES 215

Vil



FIGURES
1.1 Model of n link planar manipulator with relative joint variables 11
1.2 Model of n link planar manipulator with absolute joint variables 11
24 Two solutions for two link planar manipulator (n=2, m=2) 29
22 Three solutions out of an infinite number of solutions for two link planar
manipulator (n=2, m=2) 29
2.3 Four link planar manipulator (n=4, m=3) 30
24 Degenerate two link planar manipulator (n=2, m=1) 30
2.5 Degeneration of a four link planar manipulator onto a non-redundant three link
planar manipulator (n=3, m=3) 30
3.1a Obstacles in W-space 49
3.1b Grid representation 49
3ile Cell tree representation 49
3.1d Polygonal approximation 49
3.1e Solid geometric representation 49
3.2a Initial and final configurations of the two link manipulator 50
32b  C-space of the two link manipulator above 50
3.3 Visibility graph 54
34 Voronoi Diagram 51
3.5a Cell decomposition 52
3.5b Connectivity graph of the decomposition above 52
3.6a Wavefront expansion 52
3.6b Path using wavefront expansion 53
3.7a Orthogonal four connected grid 53
3.7b  Diagonal four connected grid 53
3.7¢c Eight connected grid 33
3.8 Distance transform propagation algorithm 54
39 Gauss-Seidel iteration 54
3.10a  The path generated by the distance transform 53
3.10b  The path generated by harmonic potential fields 55
3.10c  Comparison of paths above 55
3.11 Field generated by the distance transform 56
3.12  Field generated by the harmonic potential field 56

IX



4.1
42
43

44
45
46
4.7
4.8
5.1
52

5.3ab
5.3c.d
54
55
56
5.7
5.8a-f
5.8g
5.9a-f
5.9g
5.9h
5.10
5.l
312
5313
5.14
6.1
6.2
6.3a
6.3b
6.3¢c
6.4
6.5
6.6a-c
6.7

Gupta’s example (Gupta 1992)
Robot-field interaction

71
T

Following a path without obstacle using the first term of Gradient Projection

Technique

78

Following a trajectory with an obstacle using Gradient Projection Technique 78

Obstacle avoidance using Sertling Algorithm

79

The robot with three links implemented by Rahmanian- Shahri and Troch 79

The initial position of the robot with 14 links
The robot following a very complicated path
Description of the vector pe on the link

80
80
96

Description of the obstacle, outside margin, lines and interaction of link and

obstacle

Intersection detection

Intersection detection

The flowchart of the function ELLIPSE

Determining the velocity of the link n

BACK function

Flowchart of robot control

7 link planar manipulator

Only Settling Algorithm

6 link planar manipulator

Only Settling Algorithm

Settling Algorithm without collision

Magnified view of an obstacle and a link

12 link planar manipulator

The case of the most proximal end intersection
Benchmark environment and Settling Algorithm only
Benchmark environment and Soft-Contact Repulsion Algorithm
Following a straight line

The flowchart of straight line following algorithm
Start position of the manipulator

Intermediate position of the manipulator

Final position of the manipulator

The area the manipulator sweeps

A 15 link planar manipulator’s final position
Straight path algorithm which can follow slightly curved paths

B-Spline curve segments and their coefficients
X

96
97
97
98
99
99
100
101-103
104
104-107
107
108
108
109
109
110
110
135
135
136
136
136
137
137
137
138



