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Preface

This edition, as did the first, evolved from our experience in teaching
calculus to social science and business students. Although various text-
books have been written for this purpose, we felt the need for a readable
text that will better meet the objectives of a one-term course. Hopefully,
the student who reads this text will develop an appreciation of the
power, elegance, and efficiency of the calculus.

We are grateful to the thousands of students and to the instructors who
used the first edition. We especially are indebted to the instructors who
wrote to us and gave us their students’ opinions or who permitted the
use of the student questionnaire in their classrooms. The present
edition covers the topics recommended by The Committee on the
Undergraduate Program in Mathematics for students in the biological,
management, and social sciences. However, this textbook reflects the
opinions and suggestions of colleagues and students and, as such, is
a workable model of what the Committee had in mind.

We have minimized abstract theory and symbol shock. However, we
agree with the Committee that students should learn the correct and
precise definitions of concepts and statements of theorems. It would be
an injustice to teach them only techniques. Their future needs are
hard to predict, and they will benefit more from a broad preparation
than from knowledge of only specialized mechanical techniques. Tech-
niques cannot be used as a substitute for understanding.

We hope this volume accomplishes our objectives. If errors are found,
Mr. Whipkey still holds Mrs. Whipkey responsible and Mrs. Whipkey
accordingly blames Mr. Whipkey.

Kenneth L. Whipkey
Mary Nell Whipkey



Organization
of the Book

Since some students are reviewing mathematics as they take this course,
we have resisted the temptation to deal with certain topics simultane-
ously. Therefore, we have discussed one topic at a time. The spiral effect
is used. Thus concepts build from chapter to chapter, culminating in
Chapter 7 where previously discussed techniques are reviewed and
reapplied.

Changes from the First Edition. At the students’ request, the appendix
contains a review of basic algebra including exponents and factoring,
the answers to more problems are given, tables of logarithms and ex-
ponentials are provided, more graphs are used to illustrate concepts,
and chapter reviews have been included. The e—§ limit definition has
been moved from Chapter 3 to the appendix. The sections on inequali-
ties, limits, logarithms, and exponentials have been rewritten to make
them both clearer and easier to teach. The definite integral in Chapter 6
has been defined in a less formal manner and the pace of the entire
chapter slowed. Integration by parts has been moved to the section
after logarithms where its application is better motivated. The examples
have more steps provided and provide better preparation for working
the exercises. The exercises contain more applied problems that relate
to business, economics and biology. Finally, the format has been im-
proved to set off definitions and theorems from examples and explana-
tions.

Worked-Out Examples. Extensive examples are given. The concepts
are reexplained more frequently than in the usual calculus textbook.
Since the steps in each example are complete, there are no gaps in the
solutions. The purpose of each example is stated in a separate sentence.
This crystalizes the main idea that the example conveys.

Problems. The exercises are thorough and occur throughout the chap-
ters. Also, at the end of each chapter is a set of OPTIONAL review prob-
lems. Most instructors will not have the class time to formally assign
and go over each chapter review. However, students have requested
that we include such a review so that they may, on their own, gain addi-
tional practice. (The appendix also contains the brief review of alge-
bra, exponents, and logarithms that many students requested.) A knowl-
edge of trigonometry is not required for the text itself; however, there
is a self-contained trigonometry section in the appendix. Applied prob-
lems do not require an extensive background in any of the social science
or business courses, since all terms from these disciplines are defined.



vi Organization of the Book

In a one-term course it is not feasible to teach complicated business
or social science theory. We believe that applications requiring com-
plicated theory are better handled in later courses.

Theorems. When a theorem is proved, it is thoroughly and carefully
proved. When it is to be justified only by an intuitive argument, we
clearly state that this argument does not constitute a proof of the theorem.
Instructors may include proofs as part of the course or leave them for
interested and inquisitive students to study. Omission of proofs does
not disrupt the context.

K.L.W.
M.N.W.
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Note to
the Instructor

Chapter 1 is an optional chapter that may be used at the discretion of
the instructor. The Committee on the Undergraduate Program in Math-
ematics assumes that students are prepared to begin their collegiate
mathematics with a calculus-level course. We have found that this is
not always true. Therefore, Chapter 1 is included only for the students
who need additional background before undertaking calculus.

Although the text was designed for a one-term course of approximately
50 class sessions of 50 minutes each, it is adaptable to other time re-
quirements. A short course of 37 sessions may be devised by limiting
the study basically to Chapters 2 to 7. Also a two-term course may be
designed by including all optional material and the appendices, and by
pacing the course at an optimal rate. By omitting most optional sections
and proofs of lesser importance, and by leaving the worked examples
for the students to study, the following is a realistic syllabus for approx-
imately a 50-session course of about 50 minutes each.

Chapter 1 4 lectures Preparation for the Calculus, Sets
Order Relationships, the Coordinate
Plane, and the Straight Line
2 4 lectures Functions, Inequalities, and Absolute
Values
3 7 lectures Limits, Differentiation and Continuity
of Functions of One Independent
Variable
6 lectures Rules of Differentiation
10 lectures Mean Value Theorem, Extremization of
Functions and Applications of
Differential Calculus
6 11 lectures The Definite Integral, the Indefinite
Integral, the Fundamental Theorem of
Integral Calculus, Applications of the
Definite Integral (Omit Sections
6.7 and 6.8.)
7 8lectures The Logarithmic and Exponential
Functions, Differential Equations,
Growth and Decay Problems

Ut

K.L.W.
M.N.W.
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1
Review and Preparation for
the Study of Calculus

1.1 The Arrest of a Seventeenth Century Nonconformist
and the Development of Analytic Geometry

You, René Descartes, are hereby ordered to appear before the magis-
trates to answer charges brought against you, to wit, that you are an
atheist, that you lead an unsettled, irresponsible, or disreputable life,
moving from place to place without a fixed home, and that you are com-
pletely given up to dissipation and licentiousness.

versus

But, there are other men who attain greatness because they embody the poten-
tiality of their own day and magically reflect the future. They express the
thoughts which will be everybody’s two or three centuries after them. Such a
one was Descartes.

Thomas Huxley

Such a one was Descartes—ex-soldier, philosopher, tutor to Queen
Christina of Sweden, mathematician, and the person credited with the
invention of analytic geometry. However, analytic geometry, which
became the foundation for the calculus, was not entirely the brainchild
of Descartes. It built on the works of previous seventeenth century
mathematicians who were concerned with two basic problems:

Basic Problem I. Given any curve, find the tangent line drawn to the
curve at a point on the curve.

Example. Given curve C. Find the tangent line, ¢, to C at point P.
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Basic Problem II. Given any curve C, find the area under that curve.

Example. Given curve C. Find area A.

Both of these problems had to wait for their solution until the calculus
was developed. Therefore, the analytic geometry of Descartes was a
necessary prelude to the development of the calculus. Descartes’ great
contribution was that he gave us a way of dealing with curves in general.
Thus, instead of handling circles separately, lines separately, etc., as we
are forced to do in high school geometry, we can handle whole groups of
figures simultaneously.

Incidentally, the previously mentioned charges against Descartes
were dropped by the government of Holland. Nevertheless, he was
overjoyed to leave Holland, at the invitation of the Queen of Sweden, to
become a royal tutor. Little did he know that the Queen required her
lessons to be given at 5 a.m. Descartes, always a late riser, had his life-
long routine shattered and died of penumonia four months later. (There
may be a moral here concerning math classes given before 9 a.m.)

1.2 Rebellion at the University
and the Formalization of the Calculus

An honest courage in these matters will secure all, having law on our sides.
Isaac Newton

These were Newton’s words about the situation at Cambridge Uni-
versity and his role as a leader of opposition to the monarchy. The
government, headed by James II, was attempting to control thinking at
the university and to dictate the choice of university personnel. Fortun-
ately, this time, it was James II who left the country. Unfortunately, for
mathematics, Newton’s role in the university rebellion caused him to
devote the rest of his life to governmental service. For it was his prom-
inence in the rebellion that led to Newton’s election as representative
from Cambridge to the Convention Parliament. During the next 30
years, Newton served first as Warden and then as Master of the Mint.
Most of his free time during this period was spent in studying theology
and philosophy. This was in contrast to the prerebellion days when he
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devoted most of his time to the study of scientific and mathematical
theory.

During the prerebellion days Newton had formalized the calculus.
Concurrently, Leibnitz, in Germany, had also been able to solve the two
Basic Problems: I. finding the tangent line to a curve, and II. finding the
area under a curve. The “tools” that Newton and Leibnitz indepen-
dently invented to solve these two basic problems are now called the
derivative and the integral.

Basic Problem Tool Invented to Solve
Basic Problem
I. Find the tangent

line to a curve. Decrivative
II. Find the area
under a curve. Integral

One of Newton’s and Leibnitz’s great claims to fame and honor is that
they recognized the two basic problems are related. Therefore, the tools
invented to solve these problems, the drivative and the integral, are
also related.

Moreover, one of the great bonanzas of history is that the derivative
and integral, which were invented to solve two particular problems,
have applications to a great number of different problems in diverse
academic fields.

1.3 The Power of the Calculus
and the Rationale for its Study

The power of the calculus is derived from two sources. First, the deriv-
ative and the integral can be used to solve a multitude of problems in
many different academic disciplines. The second source of power is
found in the relevancy of the calculus to the problems facing mankind.
Among the present-day applications of the calculus are the building of
abstract models for the study of the ecology of populations, cybernetics
and its social impact on man, management practices, economics, and
medicine. Two examples of basic problems that you will encounter and
be able to solve are:

If a country’s population is increasing at a continuous rate of 4 percent
each year, in how many years will the country’s population double?

The owner of an 80-unit deluxe motel can rent all the units nightly at
$20 per night. However, for each dollar he raises the room rate, 2 units
will be vacant. How many units should he rent per night and at what rate
in order to maximize his daily income?

Indeed, it is the power of the calculus which demands that we become
familiar with its fundamental concepts. However, we will not study the
subject as it originated but will take advantage of the improvements
made in the calculus from Newton’s time to the present.

Therefore, as students of the calculus, we are dealing with ideas that
have evolved over hundreds of years and that were formalized by some
of the greatest geniuses of all time. As we deal with the products of their
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thinking, we should not be dismayed that certain ideas and concepts
may at our first and subsequent readings seem hazy and confusing to us.
The key to understanding these concepts is to repeatedly return to each
idea until it becomes meaningful. That the task is not impossible is
embodied by the basic premise for the existence of this book. For, in
writing this book, we assume it is realistic to present the great ideas of
the calculus in a meaningful manner that will minimize symbol shock
and function fatigue and also meet the recommendations of the Social
Science Research Council (SSRC) and the Committee On The Under-
graduate Program In Mathematics (CUPM).

As students in management, business, education, and the social
sciences, it is important to realize, as your professional groups have long
recognized, the increased need for greater training in mathematics. The
Social Science Research Council has for years made this recommenda-
tion. Also, the fields of biology and medicine are experiencing a need
for more advanced mathematics. Moreover, most graduate schools in
business are requiring more sophisticated courses in mathematics, and
often a graduate student may shorten his program by exhibiting ade-
quate preparation in the calculus. Even for those students not contem-
plating graduate school, the calculus serves as the foundation for many
upper-division courses, particularly probability and statistics, which are
now required in many curricula.

Before one may reconstruct the greatness, orderliness, and power of
the calculus, an awareness of certain fundamental techniques and defi-
nations must be attained. Those of you who have made adequate and
recent preparation for this excursion in calculus may find the rest of this
chapter a review of previous work. However, if your mathematics is
weak or rusty through nonuse, it will be an experience that will pay
future dividends and, as such, is relevant to our goals.

Also, Appendix 11, starting on page 313, includes a more extensive re-
view of the basic algebraic skills needed throughout this book. Some of
the topics discussed there are factoring, algebraic simplification, solu-
tion of algebraic equations, use of exponents and radicals, and work with
logarithms. Many students using this book have requested that these
topics be included for easy reference. As you progress through the text
you will find it desirable, from time to time, to make use of this Appendix.

1.4 Sets—A Very Brief Introduction

Example 1

In mathematics, the concept of a set is a convenient way to treat a col-
lection of objects. This review of sets and set operations deals with
terminology used in the remainder of the text, reviews techniques for
solving equations, and also serves as a basis for subsequent courses
in probability and statistics.

Just as point and line are undefined words in geometry, the word
“set” will be taken as an undefined word in this course. Roughly speak-
ing, a set is a collection of objects. We define the objects or members of a
set as the elements of that set.

Purpose. To illustrate sets and the mathematical shorthand for sets
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(capital letters are used to name the sets; small letters are used to name
the elements of the sets):

Problem. Form the set composed of the first two letters of the English
alphabet.

Solution. Mathematical shorthand for this set is: A= {a,b} or A= {b,a}.

Example 2
Purpose. To illustrate the concept of elements of a set:
Problem. Given the set A = {b,a}. a is an element of A. b is an element of
A. c is not an element of A. Express each of these statements using math-
matical symbols.
Solution. Mathematical shorthand for these statements is:

aEA;bEA;c&EA.
DEFINITION

Equal Sets. Two sets A and B are equal, written A = B, if and only if
A and B have exactly the same elements. That is, each element of A
belongs to B, and each element of B belongs to A.

Example 3

Example 4

DEFINITION

The words “if and only if,” abbreviated iff, mean:
If two sets are equal, then they have exactly the same elements and
moreover,
If two sets have exactly the same elements, then the two sets are
equal.

The logical symbol for if and only if (iff) is <.

Purpose. To show a second technique for describing a set and to illus-
trate the concept of equal sets:

Problem. Let P(x) be an assertion about x. Then {x|P(x)} will represent
the set of all elements x such that P(x) is true. Find S = {x|x is a U.S.
corporation with more than 1 million shareholders}.

Solution. S = {American Telephone and Telegraph, General Motors}.

Purpose. To illustrate the usage of if and only if (iff):
Problem. Which is a correct definition of a square?
(a) A four-sided polygon is a square iff its sides are equal.
(b) A four-side polygon is a square iff its vertex angles are right
angles.
(c) A four-sided polygon is a square iff it has equal sides and has
vertex angles that are right angles.
Solution. (c) is a correct definition. (a) might be a rhombus, (b) could be
any rectangle. However, (c) includes all squares and excludes all other
possibilities.

Empty Set. The empty set or null set is the set that has no elements

or members.




