Evolution

Monroe W. Strickberger SECOND EDITION

S E C O N D E D I T I O N

EVOLUTION

Monroe W. Strickberger

Museum of Vertebrate Zoology University of California, Berkeley

Jones and Bartlett Publishers

Sudbury, Massachusetts

Boston

London

Singapore

Editorial, Sales, and Customer Service Offices Jones and Bartlett Publishers 40 Tall Pine Drive Sudbury, MA 01776 508-443-5000 800-832-0034

Jones and Bartlett Publishers International Barb House, Barb Mews London W6 7PA England

Copyright © 1996, 1990 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Strickberger, Monroe W.
Evolution / Monroe W. Strickberger. — 2nd ed.
p. cm.
Includes bibliographical references and indexes.
ISBN 0-86720-892-9
1. Evolution (Biology) I. Title.
QH366.2.S78 1995
575—dc20
95-16655
CIP

Acquisitions Editor: Joseph E. Burns Production Editor: Mary Cervantes Sanger Manufacturing Buyer: Dana L. Cerrito

Design: By Design

Editorial Production Service: The Book Company

Copy Editor: Linda Purrington Typesetting: Weimer Graphics, Inc. Cover Design: Marshall Henrichs Printing and Binding: Rand McNally Cover Printing: Henry N. Sawyer Co., Inc.

Printed in the United States of America 99 98 97 96 10 9 8 7 6 5 4 3 2

P R E F A C E

ALL BIOLOGICAL PHENOMENA derive from evolutionary relationships and past interactions. As the great evolutionary geneticist Theodosius Dobzhansky remarked, "Nothing in biology makes sense except in the light of evolution." Yet unifying all biology under an evolutionary theme is still difficult, although the explosive increase in molecular, organismic, and populational information makes the realization of this goal more possible now than ever before.

The purpose of this book is to bring together some prevailing knowledge and ideas about evolution, to provide an informed framework of thought for undergraduates. It is based on a course I have given for many years to biology majors who have had prior introductory biology courses. (Reviews of some basic biological and genetic concepts are nevertheless included.)

Academic biology is heavily partitioned, and biology majors not only take a variety of specialty courses such as development, ecology, genetics, microbiology, and physiology, but also must concentrate in specific areas. Thus the evolutionary theme that runs through all biology is often fragmented, or entirely ignored. In many courses and in many institutions, evolution is little more than a curricular afterthought, and biologists emerge from such programs with little grasp of such topics as

- Philosophical and religious issues in evolution theory: Why did scientists propose and welcome evolution theory, and why do so many others still find the concept unacceptable or highly questionable?
- General events in cosmological and geological evolution: What was the "beginning" of the universe, how did it develop, and how did it lead to those features that affected life on earth?
- The origin and early development of life: How did biological organisms come into being, and from what sources?
- General features in the evolution of major life forms: What characteristics did biological organisms assume, how did they change, and why?
- The use of systematics and the influence of modern molecular phylogenies: How can we determine and characterize evolutionary relationships among biological forms, morphologically and molecularly?
- Current findings in human evolution: From where did our species originate, and how does evolution explain our features and our behavior?
- General mechanisms that underlie evolutionary changes: What laws and concepts help explain why and how differences among populations develop?

xiv Preface

Should the modern biology major have at least a modest understanding of these topics? The answer is an unequivocal *Yes*! To "make sense" of biology demands more than a short mention of a few evolutionary events in courses mainly focused on more specialized fields.

In general, I have considered evolution from a historical viewpoint, both biologically and conceptually. On the biological level, historical information passed on by transmitted genetic material connects the biology of organisms to past events-a modern organism derives from earlier organisms. On the ideological level, evolutionary concepts derive from previous cultural concepts. In both these forms of transmitted information, "like" not only produces "like" but also produces "unlike" because of (1) genetic changes in hereditary material and (2) conceptual changes in the ideas of evolution. Almost every aspect of existence has an evolutionary background and framework, and knowledge of the past is essential for fully understanding the present. In fact, what makes biology unique in contrast to chemistry or physics is that biological forms and functions, in all their many variations, originated through historical events and continue to do so-an understanding of biology is inseparable from its history, and evolutionary predictability cannot escape from contingency.

The realm of evolutionary science therefore includes both chronology and mechanisms—we seek concepts that explain both the sequence of events and their causes. For this purpose, evolutionary scientists have developed, and continue to develop, methods that reconstruct evolutionary events and let us understand not only biological chronology but also its genetic connections. That is, we conceive that evolution follows a sequence of logically understandable causes that give us rational explanations and reliable knowledge of the past.

Because it combines both history and mechanism, evolution is an exciting subject, and I have found over the years that students often respond best when the text is generously illustrated. I have therefore provided close to 450 figures, tables, and diagrams. To further help the student master the material, the text includes boxed reviews of special topics, end-of-chapter summaries, lists of key terms, discussion questions, and a glossary. For research and reference, complete chapter bibliographies as well as

separate author and subject indexes are provided. Some added points of interest, not crucial to understanding the text, are given in footnotes.

Although the order of topics offered here has worked well for my own classes, I know there are different ways to organize this material, and the chapters have therefore generally been written to allow considerable flexibility. I have avoided an overly theoretical treatment of the subject. Nothing beyond elementary algebra is needed to understand the mathematics used.

Since evolution is the broadest of biological fields, covering the greatest range of disciplines, even the brief survey of evolution offered here has errors and ambiguities. To the extent that this book has been spared many such failings, I owe thanks to many reviewers, who commented on one or more sections of this new edition:

Robert Carroll, McGill University

David Deamer, University of California at Davis

Cesare Emiliani, University of Miami

Chandler Fulton, Brandeis University

Walter Hartwig, State University of New York at Stony Brook

Laurence Mueller, University of California at Irvine

Michael Parrish, Northern Illinois University

Tab Rasmussen, Washington University, St. Louis

Ursula Rolfe, Children's Hospital, Oakland, California

Michael Ruse, University of Guelph

Dorion Sagan, Amherst, Massachusetts

Thomas Taylor, Ohio State University

James Valentine, University of California at Berkeley

Burton Wheeler, Washington University, St. Louis

I am grateful to Joe Burns, vice president of Jones and Bartlett, for his continued interest and help.

BRIEF CONTENTS

			T 1 1		
Chapter 1	Before Darwin 3		Evolution 247		
Chapter 2	Darwin 21	Chapter 13	Evolution in Plants and Fungi 281		
Chapter 3	The Arguments and the Evidence 35	Chapter 14	From Protozoa to Metazoa 307		
		Chapter 15	Evolution Among Invertebrates 335		
Chapter 4	The Darwinian Impact: Evolution and Religion 57	Chapter 16	The Origin of Vertebrates 363		
1,		Chapter 17	From Water to Air: Amphibians, Reptiles, and Birds 381		
PART I	I The Physical and Chemical	Chapter 18	Evolution of Mammals 417		
	Framework 69	Chapter 19	Primate Evolution and Human		
Chapter 5	The Beginning 71		Origins 437		
Chapter 6	The Earth 81				
Chapter 7	Molecules and the Origin of Life 105	PART IV The Mechanisms 481			
Chapter 8	Proteins and the Genetic Code 135	Chapter 20	Populations, Gene Frequencies, and Equilibrium 483		
Chapter 9	From Metabolism to Cells 151	Chapter 21	Changes in Gene Frequencies 501		
PART III	The Organic Framework 179	Chapter 22	Structure and Interaction of Populations 521		
Chapter 10	Genetic Constancy and Variability 181	Chapter 23	From Races to Species 545		
		Chapter 24	Culture and the Control of Human		
Chapter 11	Systematics and Classification 227		Evolution 569		

PART I The Historical Framework 1 Chapter 12 Molecular Phylogenies and

C O N T E N T S

Preface xiii

PART I: THE HISTORICAL FRAMEWORK

Chapter 1 **▼** Before Darwin 3

Idealism and the Species 3 The Great Chain of Being 7 The Origin of Systematics 9

Profile: Ernst Mayr, Harvard University 10

Spontaneous Generation 13

Fossils 14

Box 1–1 Culture, Science, and Philosophy 16

Summary 18 Key Terms 18 Discussion Questions 19 References 19

Chapter 2 ▼ Darwin 21

Charles Darwin 21 The Voyage of the *Beagle* 22 The Lamarckian Heritage 26 Natural Selection 27 *Summary 30* Key Terms 33 Discussion Questions 33 References 33

Chapter 3 ▼ The Arguments and the Evidence 35

Scientific Objections 35 Blending Inheritance 35 Variability 36 Isolation 37 Age of the Earth 38 Support for Darwin 38 Systematics 39 Geographical Distribution 39 Comparative Anatomy 41 Embryology 43 Fossils 48 Artificial Selection 54 Summary 54 Key Terms 55 Discussion Questions 55 References 55

viii Contents

Chapter 4 ▼ The Darwinian Impact: Evolution and Religion 57

The Religious Attack 58
The Basis of Religious Belief 59
Challenges to Religion: The Question of Design 60
Sources for the Preservation of Religion 63

The "Truce" 64
Religious Fundamentalism and "Creation Science" 64
Summary 67
Key Terms 68
Discussion Questions 68
References 68

PART II: THE PHYSICAL AND CHEMICAL FRAMEWORK

Chapter 5 ▼ The Beginning 71

The Origin of the Universe 71

Evolution of a Star and Its Elements 75

Summary 78

Key Terms 79

Discussion Questions 79

References 80

Chapter 6 ▼ The Earth 81

The Earth's Atmosphere 82 The Earth's Structure 83 Geological Dating 85 Dating with Radioactive Elements 89 Continental Drift 89 Fit of the Continents 90 Similarity of Rocks, Fossils, and Glaciations 90 Paleomagnetism 91 The Ocean Floor 93 To and from Pangaea 95 **Tectonic Plates 97** Biological Effects of Drift 98 Summary 102 Key Terms 102 Discussion Questions 103 References 103

Chapter 7 ▼ Molecules and the Origin of Life 105

Amino Acids 105
Nucleic Acids 106 **Profile:** J. William Schopf, University of California at Los Angeles 109
Life only from Prior Life 113
The Terrestrial Origin of Life 114
Origin of Basic Biological Molecules 117
Condensation and Polymerization 121

Proteinoids 124

The Origin of Organized Structures 126
Coacervates 128
Microspheres 128

The Origin of Selection 129
Summary 131
Key Terms 132
Discussion Questions 132
References 133

Chapter 8 ▼ Proteins and the Genetic Code 135

Proteins or Nucleic Acids First? 135 **Box 8–1** The RNA World 138

Evolution of Protein Synthesis 140

Evolution of the Genetic Code 141

Summary 148

Key Terms 148

Discussion Questions 148

References 149

Chapter 9 ▼ From Metabolism to Cells 151

Anaerobic Metabolism 151 **Profile:** Lynn Margulis, University of Massachusetts at Amherst 154

Photosynthesis 155

Oxygen 158

Aerobic Metabolism 161

Early Fossilized Cells 164

Prokaryotes and Eukaryotes 165

Evolution of Eukaryotic Organelles 172

Summary 174

Key Terms 176

Discussion Questions 176

References 177

Contents ix

PART III: THE ORGANIC FRAMEWORK

Chapter 10 ▼ Genetic Constancy and Variability 181

Cell Division 181

Mendelian Segregation and Assortment 185

Dominance Relations and Multiple Alleles 185

Exceptions to Mendelism 189

Sex Linkage 189

Linkage and Recombination 190

Box 10-1 Evolution of Sex-Determining

Systems 191

Chromosomal Variations in Number 194

Chromosomal Variations in Structure 196

Deletions or Deficiencies 198

Duplications 198

Inversions 198

Translocations 200

Chromosomal Evolution in Drosophila

and Primates 202

Gene Mutations 207

Regulatory Mutations 208

Quantitative Variation 210

Mutation Rates 213

Transposons, Repeated Sequences, and

Selfish DNA 216

The Randomness of Mutation 218

Genetic Polymorphism: The Widespread Nature

of Variability 219

Summary 222

Key Terms 223

Discussion Questions 224

References 224

Chapter 11 ▼ Systematics and Classification 227

Species 228

Phylogeny 232

Problems of Classification 236

Phenetics 238

Cladistics 238

Evolutionary Classification 241

Concluding Remarks 242

Summary 243

Key Terms 243

Discussion Questions 244

References 244

Chapter 12 ▼ Molecular Phylogenies and Evolution 247

Immunological Techniques 247

Amino Acid Sequences 248

Profile: Walter M. Fitch, University of California

at Irvine 251

DNA and Its Repetitive Sequences 255

Nucleic Acid Phylogenies Based on DNA-

DNA Hybridizations 258

Box 12-1 Quantitative DNA Measurements 260

Nucleic Acid Phylogenies Based on Restriction

Enzyme Sites 261

Box 12-2 Ancient DNA 264

Nucleic Acid Phylogenies Based on Nucleotide Sequence Comparisons and Homologies 265

Combined Nucleic Acid-Amino

Acid Phylogenies 267

Rates of Molecular Change:

Evolutionary Clocks 270

Regulatory Genes and Some

Evolutionary Consequences 272

Summary 274

Box 12-3 Molecular Evolution in the

Test Tube 276

Key Terms 277

Discussion Questions 277

References 278

Chapter 13 ▼ Evolution in Plants and Fungi 281

Terrestrial Algae 281

Bryophytes 283

Sex, Meiosis, and Alternation of Generations 286

Early Vascular Plants 288

From Swamps to the Uplands 292

Angiosperms 295

Evolution of Angiosperms 296

Fungi 301

Summary 304

Key Terms 305

Discussion Questions 305

References 305

X Contents

Chapter 14 ▼ From Protozoa to Metazoa 307

Protistan Ancestry 310

Profile: James W. Valentine, University of

California at Berkeley 311

Hypotheses of Metazoan Origin 314

Evolution from Plants 314

Cellularization of a Multinucleate Protozoan 315

Gastrulation of a Colonial Protozoan 316

Planula Hypothesis 318

The Coelom 320

Metamerism 320

Box 14-1 Differentiation and the Evolution

of Patterns 322

Evolutionary Solutions to Problems

of Locomotion 325

Summary 330

Key Terms 331

Discussion Questions 332

References 332

Chapter 15 ▼ Evolution Among Invertebrates 335

Porifera (sponges), Placozoa, and Mesozoa 335

Radiata 341

Platyhelminthes and Other Acoelomates 342

Pseudocoelomate (Aschelminthes) Phyla 345

Coelomates 347

Mollusca 347

Annelida 351

Arthropoda 353

Echinodermata 357

Summary 359

Key Terms 360

Discussion Questions 360

References 360

Chapter 16 ▼ The Origin of Vertebrates 363

Hypotheses on the Origin of Vertebrates 363

Cephalochordates and Urochordates 366

Fossil Jawless Fish (Agnatha) 371

Evolution of Jawed Fishes (Gnathostomata) 373

Chondricthyes and Osteichthyes 375

The Bony Fish 376

Actinopterygii 376

Sarcopterygii 377

Summary 379

Key Terms 379 Discussion Questions 380

References 380

Chapter 17 ▼ From Water to Air: Amphibians, Reptiles, and Birds 381

Early Amphibians 381

Profile: Robert L. Carroll, McGill University 385

Modern Amphibians 388

The Amniote Grade of Evolution 390

Reptilian Evolution 395

Early Archosaurs 398

The Dinosaurs 399

Endothermy Versus Ectothermy 400

The Late Cretaceous Extinctions 403

Reptilian Flight: Pterosaurs 405

Box 17-1 Extinctions and

Extraterrestrial Impacts 406

Birds 409

Summary 411

Key Terms 413

Discussion Questions 413

References 414

Chapter 18 ▼ Evolution of Mammals 417

Teeth 418

Jaws and Hearing 419

Early Mammals 421

Early Mammalian Habitats 424

Marsupials and Placentals 424

The Mesozoic Experience 426

The Cenozoic Era: The Age of Mammals and the

Northern Continents 428

Two Island Continents: Australia and

South America 430

Summary 433

Key Terms 435

Discussion Questions 435

References 435

Chapter 19 **▼** Primate Evolution and Human Origins 437

Primate Classification 437

Lemurs 438

Lorises 438

Tarsiers 440

Contents Xi

Platyrrhines 440 Catarrhines 440 Hominoids 440 Gibbons 440 Orangutans 440 Chimpanzees 440 Gorillas 441

Human–Ape Comparisons 441 The Fossil Record 441 The Australopithecines 444 Bipedalism 447 Homo 450

Box 19–1 Did *Homo Sapiens* Arise in One Place Only or in Many Places? 458

Hunting Hominids 459 Communication 463 Speech 464

Language and Self-Awareness 466

Box 19-2 Evolution of the Human Brain 470

Linguistic Abilities 471 Technical Aptitudes 471 Capacities for Social Interactions 471

Altruism and Morality 475 Summary 476 Key Terms 477 Discussion Questions 477 References 478

PART IV: THE MECHANISMS

Chapter 20 ▼ Populations, Gene Frequencies, and Equilibrium 483

Mutationists and Selectionists 483
The Neo-Darwinian Synthesis 484
Populations and Gene Frequencies 486
Conservation of Gene Frequencies 487
Attainment of Equilibrium at Two or
More Loci 490
Sex Linkage 493
Equilibria in Natural Populations 494
Inbreeding 495
Summary 498
Key Terms 498
Discussion Questions 499
References 499

Chapter 21 ▼ Changes in Gene Frequencies 501

Mutation Rates 501
Selection 502
Heterozygous Advantage 505
Selection and Polymorphism 506
The Kinds of Selection 509
Equilibrium Between Mutation and Selection 512
Migration 514
Random Genetic Drift 515
Summary 518
Key Terms 518
Discussion Questions 519
References 519

Chapter 22 ▼ Structure and Interaction of Populations 521

Some Ecological Aspects of Population Growth 521 Genetic Load and Genetic Death 525 The Cost of Evolution and the Neutralist Argument 527 The Selectionist Argument 528 Association Between Enzyme Polymorphisms and Ecological Conditions 529 Nonrandom Allelic Frequencies in Enzyme Polymorphisms 529 Association Between Enzyme Function and Degree of Polymorphism 529 Polymorphisms for DNA Coding Sequences 530 Some Genetic Attributes of Populations 531 Sex 531 Mutation 531 Linkage 533 The Adaptive Landscape 533

The Adaptive Landscape 53: Group Selection 536 Group Interaction 537 Coevolution 540 Summary 541 Key Terms 541 Discussion Questions 542 References 542

Chapter 23 ▼ From Races to Species 545

Races 545 Adaptational Patterns 548 xii Contents

Profile: Francisco J. Ayala, University of California at Irvine 549
Behavioral Adaptations and Strategies 551
Sexual Competition and Selection 554
From Races to Species Barriers 555
Isolating Mechanisms 556
Modes of Speciation 557
Can Species Differences
Originate Sympatrically? 560
Evolutionary Rates and Punctuated Equilibria 561
Summary 564
Key Terms 564
Discussion Questions 565
References 565

Chapter 24 ▼ Culture and the Control of Human Evolution 569

Learning, Society, and Culture 569 Relative Rates of Cultural and Biological Evolution 570 Social Darwinism 571
Sociobiology 573
Biological Limitations 575
Deleterious Genes 577
Eugenics 578
The Kinds of Eugenics 579
The Future 580

Box 24–1 Genetic Engineering, or Evolution by Intervention 581 Summary 585 Key Terms 585 Discussion Questions 585 References 586

Glossary 589 Author Index 617 Subject Index 625 P A R T I

The Historical Framework

C H A P T E R

Before Darwin

BIOLOGICAL EVOLUTION ENTAILS inherited changes in populations of organisms, over a period of time, that lead to differences among them. Essential to our present concept of evolution are the notions that a group of organisms is bound together by its common inheritance; that the past has been long enough for inherited changes to accumulate; and perhaps most essential of all, that discoverable natural events and relationships explain the phenomena of evolution. Although people studied and discussed each of these aspects at various times in human history, it is only during this last century, since the work of Charles Darwin, that biological evolution became socially accepted. This acceptance was based on many changes in how people view the world and explain natural phenomena. The purpose of this chapter and the three that follow is to provide a review of some of the underpinnings that enabled the modern Darwinian concept of evolution to unfold.1

Idealism and the Species

Attempts to understand the world in a rational waythat is, by commonly accepted methods of thought and logic-began about the fifth century B.C. in Greece. Plato (428–348 B.C.), the philosopher who along with Aristotle (384-322 B.C.) had the greatest impact on Western thought, suggested that the observable world-our experience-is no more than a shadowy reflection of underlying "ideals" that are true and eternal for all time. Most things, according to Plato, were originally in the form of such eternal ideals, and any change represents disharmony. The Platonic goal for human society was to analyze experience in order to understand and strive for ideal perfection. The notions of "perfect circles" to explain the motions of the heavenly bodies (Fig. 1-1), "perfect numbers" such as 6(1+2+3) and 10(1+2+3+4), and the four "elements" (earth, water, fire, and air) to which all matter could be reduced were among the results of the search for perfection.² What are the sources of such idealism?

^{&#}x27;The term "evolution" actually had a seventeenth-century embryological origin, defined as the "unfolding" of parts and organs during development. It was only in the nineteenth century that people came to generally use *evolution* to mean the transformation of species.

²Variations on this theme were not uncommon. To the four elements Empedocles (c. 490–430 B.C.) added two active principles: love, which binds elements together, and hate, which (continues)

Figure 1-1

A medieval concept of the ten spheres of the universe with Earth and its four elements (earth, air, fire, water) at the center, according to Apian's Cosmographia (published 1539 in Antwerp). Surrounding Earth are transparent crystal spheres containing in succession the moon, Mercury, Venus, the sun, Mars, Jupiter, Saturn, the fixed stars, and spheres involved in the motion of the stars and of the entire universe ("Primū Mobile"). Beyond these spheres lies Heaven ("The Empire and Habitation of God and All the Elect").

To a large extent, idealism originates from our often-used ability to abstract concepts from experience—to think, for example, of "cat" rather than one particular animal of specific size and head shape, with claws, tail, fur, and so on. Such abstraction lets us generalize our experience, to differentiate between cat and tiger, to pet the cat and run away from the

tiger, and to communicate these general concepts or universals to others through our symbolic language. Despite these advantages, however, generalizations are not always reliable, because our experiences may modify the generalizations: not all cats or tigers are the same.

In fact, the struggle between generalization and particularization is continual, because only by generalizing can we conceive of regularity in nature and thereby consciously adapt to its needs, but only by particularizing can we contact and observe reality. No sooner do we conceive of some new generality than we often discover further details and may thereby be forced to modify our original conception. Experience

separates them. A further element, the "quintessence," was presumed by Aristotle and others to be the component of heavenly bodies. In respect to mystical numbers, Oken (1779–1851), one of the German Natural Philosophers, proposed that the highest mathematical idea is zero, and God, or the "primal idea," is therefore zero.