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PREFACE

My earlier book, A First Course in Linear Algebra with Concurrent
Examples (referred to below as the First Course), was an introduction to
the use of vectors and matrices in the solution of sets of simultaneous
linear equations and in the geometry of two and three dimensions. As its
name suggests, that much is only a start. For many readers, such
elementary material may satisfy the need for appropriate mathematical
tools. But, for others, more advanced techniques may be required, or,
indeed, further study of algebra for its own sake may be the objective.

This book is therefore in the literal sense an extension of the First
Course. The first eleven chapters are identical to the earlier book. The
remainder forms a sequel: a continuation into the next stage of the subject.
This aims to provide a practical introduction to perhaps the most
important applicable idea of linear algebra, namely eigenvalues and
eigenvectors of matrices. This requires an introduction to some general
ideas about vector spaces. But this is not a book about vector spaces in
the abstract. The notions of subspace, basis and dimension are all dealt
with in the concrete context of n-dimensional real Euclidean space. Much
attention is paid to the diagonalisation of real symmetric matrices, and
the final two chapters illustrate applications to geometry and to differential
equations.

The organisation and presentation of the content of the First Course
were unusual. This book has the same features, and for the same reasons.
These reasons were described in the preface to the First Course in the
following four paragraphs, which apply equally to this extended volume.

‘Learning is not easy (not for most people, anyway). It is, of course,
aided by being taught, but it is by no means only a passive exercise. One
who hopes to learn must work at it actively. My intention in writing this
book is not to teach, but rather to provide a stimulus and a medium
through which a reader can learn. There are various sorts of textbook
with widely differing approaches. There is the encyclopaedic sort, which
tends to be unreadable but contains all of the information relevant to its
subject. And at the other extreme there is the work-book, which leads
the reader in a progressive series of exercises. In the field of linear algebra
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there are already enough books of the former kind, so this book is aimed
away from that end of the spectrum. But it is not a work-book, neither
is it comprehensive. It is a book to be worked through, however. It is
intended to be read, not referred to.

‘Of course, in a subject such as this, reading is not enough. Doing is
also necessary. And doing is one of the main emphases of the book. It is
about methods and their application. There are three aspects of this
provided by this book: description, worked examples and exercises. All
three are important, but I would stress that the most important of these
is the exercises. You do not know it until you can do it.

‘The format of the book perhaps requires some explanation. The
worked examples are integrated with the text, and the careful reader will
follow the examples through at the same time as reading the descriptive
material. To facilitate this, the text appears on the right-hand pages only,
and the examples on the left-hand pages. Thus the text and corresponding
examples are visible simultaneously, with neither interrupting the other.
Each chapter concludes with a set of exercises covering specifically the
material of that chapter. At the end of the book there is a set of sample
examination questions covering the material of the whole book.

‘The prerequisites required for reading this book are few. It is an
introduction to the subject, and so requires only experience with methods
of arithmetic, simple algebra and basic geometry. It deliberately avoids
mathematical sophistication, but it presents the basis of the subject in a
way which can be built on subsequently, either with a view to applications
or with the development of the abstract ideas as the principal
consideration.’

Last, this book would not have been produced had it not been for the
advice and encouragement of David Tranah of Cambridge University
Press. My thanks go to him, and to his anonymous referees, for many
helpful comments and suggestions.
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Examples

1.1 Simple elimination (two equations).
2x+3y=1
x—2y=4.
Eliminate x as follows. Multiply the second equation by 2:
2x+3y=1
2x—4y=8.
Now replace the second equation by the equation obtained by subtracting the first
equation from the second:
2x+3y=1
—Ty=1.
Solve the second equation for y, giving y= — 1. Substitute this into the first
equation:
2x—-3=1,
which yields x=2. Solution: x=2, y= —1.

1.2 Simple elimination (three equations).
x=2y+ z=5
3x+ y— z=0
x+3y+2z=2.
Eliminate z from the first two equations by adding them:
4x —y=>5.
Next eliminate z from the second and third equations by adding twice the second
to the third:
Tx+Sy=2.
Now solve the two simultaneous equations:
4x— y=S5
Tx+5Sy=2
as in Example 1.1. One way is to add five times the first to the second, obtaining
27x=21,
so that x=1. Substitute this into one of the set of two equations above which
involve only x and y, to obtain (say)

4—y=5,
so that y= — 1. Last, substitute x=1and y= — 1 into one of the original equations,
obtaining

14+2+2z=5,

so that z=2. Solution: x=1, y=—1, z=2.
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1

Gaussian elimination

We shall describe a standard procedure which can be used to solve sets of
simultaneous linear equations, no matter how many equations. Let us
make sure of what the words mean before we start, however. A linear
equation is an equation involving unknowns called x or y or z, or x, or x,
or x;, or some similar labels, in which the unknowns all occur to the first
degree, which means that no squares or cubes or higher powers, and no
products of two or more unknowns, occur. To solve a set of simultaneous
equations is to find all values or sets of values for the unknowns which
satisfy the equations.

Given two linear equations in unknowns x and y, as in Example 1.1, the
way to proceed is to eliminate one of the unknowns by combining the two
equations in the manner shown.

Given three linear equations in three unknowns, as in Example 1.2, we
must proceed in stages. First eliminate one of the unknowns by combining
two of the equations, then similarly eliminate the same unknown from a
different pair of the equations by combining the third equation with one of
the others. This yields two equations with two unknowns. The second stage
is to solve these two equations. The third stage is to find the value of the
originally eliminated unknown by substituting into one of the original
equations.

This general procedure will extend to deal with n equations in n
unknowns, no matter how large n is. First eliminate one of the unknowns,
obtaining n—1 equations in n—1 unknowns, then eliminate another
unknown from these, giving n —2 equations in n —2 unknowns, and so on
until there is one equation with one unknown. Finally, substitute back to
find the values of the other unknowns.

There is nothing intrinsically difficult about this procedure. It consists of
the application of a small number of simple operations, used repeatedly.
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13 The Gaussian elimination process.
2x; — X3+3x3= 1 (1)
4x, +2x,— x3=—8 (2)
Ix;+ x;42x3=-—1 3)
Stage 1: x, —4x,+3x;= 4 1+2
4x, +2x,— x3=—8 (2)
Ix; + x4 2x3=—1 (3)

Stage 2: x, —4x,+3x;= 4 (1)
4x,—Txy= —10 @2)—4x(1)
$x;—3xy=—3 (3)-3x(1)

Stage 3: x, —4x,+3x;= 4 (1)

Xy—3x3=—3 (2)+4
X —3x3=-3 (3)
Stage 4: x, —ix,+3x3= 4 (1
X3 —3x3=—3 )

= 2 (3)-3x(2)

Stage 5: x; —ix,+3x;= 4 (1)
X3—3x3=—3 2

Xy= 2 (3) -4

Now we may obtain the solutions. Substitute x,=2 into the second equation.
X,—3=—3, sox,=1.

Finally substitute both into the first equation, obtaining
x,—4+3=4, sox,=-2.

Hence the solution is x, = —2, x,=1, x;=2.
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These include multiplying an equation through by a number and adding or
subtracting two equations. But, as the number of unknowns increases, the
length of the procedure and the variety of different possible ways of
proceeding increase dramatically. Not only this, but it may happen that
our set of equations has some special nature which would cause the
procedure as given above to fail: for example, a set of simultaneous
equations may be inconsistent, i.e. have no solution at all, or, at the other
end of the spectrum, it may have many different solutions. It is useful,
therefore, to have a standard routine way of organising the elimination
process which will apply for large sets of equations just as for small, and
which will cope in a more or less automatic way with special situations.
This is necessary, in any case, for the solution of simultaneous equations
using a computer. Computers can handle very large sets of simultaneous
equations, but they need a routine process which can be applied
automatically. One such process, which will be used throughout this book,
is called Gaussian elimination. The best way to learn how it works is to
follow through examples, so Example 1.3 illustrates the stages described
below, and the descriptions should be read in ¢onjunction with it.

Stage 1 Divide the first equation through by the coefficient of x,. (If this
coefficient happens to be zero then choose another of the
equations and place it first.)

Stage 2 Eliminate x, from the second equation by subtracting a multiple of
the first equation from the second equation. Eliminate x, from the
third equation by subtracting a multiple of the first equation from
the third equation.

Stage 3 Divide the second equation through by the coefficient of x,. (If this
coefficient is zero then interchange the second and third equations.
We shall see later how to proceed if neither of the second and third
equations contains a term in x,.)

Stage 4 Eliminate x, from the third equation by subtracting a multiple of
the second equation.

Stage 5 Divide the third equation through by the coefficient of x;. (We
shall see later how to cope if this coefficient happens to be zero.)

At this point we have completed the elimination process. What we have
done is to find another set of simultaneous equations which have the same
solutions as the given set, and whose solutions can be read off very easily.

What remains to be done is the following.

Read off the value of x;. Substitute this value in the second
equation, giving the value of x,. Substitute both values in the first
equation, to obtain the value of x,.
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14 Using arrays, solve the simultaneous equations:
Xy +X;— X3= 4
2x, —x,+3x3=17
4x, +x,+ x3=15.
First start with the array of coefficients:
1 1 -1 4
2 -1 3 7
4 1 1 15

1 I -1 4

8 =3 § =1 2)—2x(1)
0 -3 5 -1 3)—4x(1)
1 1 -1 4

0 1 -3 4 (2)+ -3
0 -3 5 -

1 1 -1 4

0 1 -1 4

0 0 0 0 (3)+3x(2)

See Chapter 2 for discussion of how solutions are obtained from here.

15 Using arrays, solve the simultaneous equations:
3x, =3x,+ x3=1
—Xx;+ X;+2x3=2
2x; + x,—3x3;=0.

What follows is a full solution.

3 -3 1 1
—1 1 2 2
2 1 -3 0
[ B T ! (=3
-1 1 2 2
2 1 -3 0
1 -1 4 1
o 0o 3 3 @)+(1)
0 -4 -2 (3)—2x (1)

o
(= R
|
wia Y o
|
WS Wi W

} interchange rows




1. Gaussian elimination 5

Notice that after stage 1 the first equation is not changed, and that after
stage 3 the second equation is not changed. This is a feature of the process,
however many equations there are. We proceed downwards and eventually
each equation is fixed in a new form.

Besides the benefit of standardisation, there is another benefit which can
be derived from this process, and that is brevity. Our working of Example
1.3 includes much that is not essential to the process. In particular the
repeated writing of equations is unnecessary. Our standard process can be
developed so as to avoid this, and all of the examples after Example 1.3
show the different form. The sets of equations are represented by arrays of
coefficients, suppressing the unknowns and the equality signs. The first step’
in Example 1.4 shows how this is done. Our operations on equations now
become operations on the rows of the array. These are of the following
kinds:

@ interchange rows,

@ divide (or multiply) one row through by a number,

@ subtract (or add) a multiple of one row from (to) another.
These are called elementary row operations, and they play a large part in our
later work. It is important to notice the form of the array at the end of the
process. It has a triangle of Os in the lower left comner and 1s down the
diagonal from the top left.

Now let us take up two complications mentioned above. In stage 5 of the
Gaussian elimination process (henceforward called the GE process) the
situation not covered was when the coefficient of x; in the third equation
(row) was zero. In this case we divide the third equation (row) by the
number occurring on the right-hand side (in the last column), if this is not
already zero. Example 1.4 illustrates this. The solution of sets of equations
for which this happens will be discussed in the next chapter. What happens
is that either the equations have no solutions or they have infinitely many
solutions.

The other complication can arise in stage 3 of the GE process. Here the
coefficient of x, may be zero. The instruction was to interchange equations
(rows) in the hope of placing a non-zero coefficient in this position. When
working by hand we may choose which row to interchange with so as to
make the calculation easiest (presuming that there is a choice). An obvious
way to do this is to choose a row in which this coefficient is 1. Example 1.5
shows this being done. When the GE process is formalised (say for
computer application), however, we need a more definite rule, and the one
normally adopted is called partial pivoting. Under this rule, when we
interchange rows because of a zero coefficient, we choose to interchange
with the row which has the coefficient which is numerically the largest (that
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1 -1 % 3
0 1 - -2 (2)+3
o 0 1 1 3)+3
From here, x;=1, and substituting back we obtain
x,—4Y=-3 sox,=1
Substituting again:
x;—1+4=4, sox, =1
Hence the solution sought is: x; =1, x,=1, x3=1.
1.6 Using arrays, solve the simultaneous equations:
X+ X;— x3=-3
2x,+2x,+ x3= 0
Sx; 4+ 5x, —3x3=—8.
Solution:
1 1 -1 -3
2 2 1 0
5 5 -3 -8
1 1 -1 -3
0 o0 3 6 (2)—2x(1)
0o 0o 2 7 (3)-5x(1)
1 1 -1 -3
0o 0 1 2 2)+3
0 o0 2 7
{ | =I =3
0O o0 1
0O 0 o0 3 3)—2x(2)

Next, and finally, divide the last row by 3. How to obtain solutions from this point is
discussed in Chapter 2. (In fact there are no solutions in this case.)

1.7 Solve the simultaneous equations:
2xy —2X,4+ X3—3x4= 2
Xy — Xp+3x3— x4=-2
—X;—2x,+ Xx3+2x,=—6
Ix;+ x;— x3—2x,= 7.
Convert to an array and proceed:
2 -2 1 -3 2
1 -1 3 -1 =2
-1 =2 1 2 -6
3 1 -1 =2 7




1. Gaussian elimination 7

is, the largest when any negative signs are disregarded). This has two
benefits. First, we (and more particularly, the computer) know precisely
what to do at each stage and, second, following this process actually
produces a more accurate answer when calculations are subject to
rounding errors, as will always be the case with computers. Generally, we
shall not use partial pivoting, since our calculations will all be done by hand
with small-scale examples.

There may be a different problem at stage 3. We may find that there is no
equation (row) which we can choose which has a non-zero coefficient in the
appropriate place. In this case we do nothing, and just move on to
consideration of x, as shown in Example 1.6. How to solve the equations
in such a case is discussed in the next chapter.

The GE process has been described above in terms which can be
extended to cover larger sets of equations (and correspondingly larger
arrays of coefficients). We should bear in mind always that the form of the
array which we are seeking has rows in which the first non-zero coefficient
(if there is one) is 1, and this 1 is to the right of the first non-zero coefficient
in the preceding row. Such a form for an array is called row-echelon form.
Example 1.7 shows the process applied to a set of four equations in four
unknowns.

Further examples of the GE process applied to arrays are given in the
following exercises. Of course the way to learn this process is to carry it out,
and the reader is recommended not to proceed to the rest of the book before
gaining confidence in applying it.

Summary

The purpose of this chapter is to describe the Gaussian elimination process
which is used in the solution of simultaneous equations, and the
abbreviated way of carrying it out, using elementary row operations on
rectangular arrays.



