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PREFACE

Thorough descriptions of branching processes can be found in almost every book and monograph that deals
with stochastic processes [1-5]. Moreover, in the monographs by T.E. Harris [6] and B.A. Sevast’yanov [7],
nearly every problem of the theory is discussed with mathematical rigour. There are innumerable publications
available about the applications of the theory of branching processes in the different fields of natural sciences
such as physics [8], nuclear engineering [9—11], and biology [12]. With regard to the fluctuations in branching
processes concerning nuclear chain reactions, these are synonymous with zero power neutron noise, or neutron
fluctuations in zero power systems. In this respect, already in 1964, earlier than the books by Stacey [9] and
Williams [11] appeared in print, a remarkable general work, amounting to a monograph, was published by
D.R. Harris [13] on this topic.

However, it is somewhat surprising that no monograph has been published since 1974 on neutron fluctu-
ations. There appears to be a need for a self~contained monograph on the theory and principles of branching
processes that are important both for the studies of neutron noise and for the applications, and which at the
same time would treat the recent research problems of neutron noise by accounting for new developments.
The ambition to fill this gap constitutes the motivation for writing this book.

This book was thus written with two objectives in mind, and it also consists of two parts, although the
objectives and parts slightly overlap. The first objective was to present the theory and mathematical tools used
in describing branching processes which can be used to derive various distributions of the population with
multiplication. The theory is first developed for reproducing and multiplying entities in general, and then is
applied to particles and especially neutrons in particular, including the corresponding detector counts. Hence,
the text sets out by deriving the basic forward and backward forms of the master equations for the probability
distributions and their generating functions induced by a single particle. Various single and joint distributions
and their special cases are derived and discussed. Then the case of particle injection by an external source
(immigration of entities) is considered. Attention is given to the case when some entities (particles) are born
with some time delay after the branching event. Moments, covariances, correlations, extinction probabilities,
survival times and other special cases and special probabilities are discussed at depth.

All the above chapters concern an infinite homogeneous material. In Chapter 7 space dependence is
introduced. A one-dimensional case is treated as an illustration of a simple space-dependent process, in which
a number of concrete solutions can be given in closed compact form.

Whereas the first part treats concepts generally applicable to a large class of branching processes, Part II of
this book is specifically devoted to neutron fluctuations and their application to problems of reactor physics
and nuclear material management. The emphasis is on the elaboration of neutron fluctuation based methods
for the determination of the reactivity of subcritical systems with an external source. First, in Chapter 8, a
detailed derivation of the Pal-Bell equation, together with its diffusion theory approximation, is given. The
original publication of the Pil-Bell equation constituted the first theoretical foundation of the zero power
noise methods which had been suggested earlier by empirical considerations. Thereafter, Chapters 9 and 10
deal with the applications of the general theory to the derivation of the Feynman and Rossi-alpha methods.
Chapter 9 concerns the derivation of the classical formulae for traditional systems, whereas Chapter 10 reflects
the recent developments of these methods in connection with the so-called accelerator-driven systems, i.e.
subcritical cores driven with a spallation source, and/or with pulsed sources. Finally, Chapter 11 touches
upon the basic problems and methods of identifying and quantifying small samples of fissile material from
the statistics of spontaneous and induced neutrons and photons. This area of nuclear safeguards, i.e. nuclear
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material accounting and control, is under a rapidly increasing attention due to the general increase of safety
and safeguards needs worldwide.

A special new contribution of this book to the field of neutron noise is constituted by Chapter 6, in
which the so-called zero power neutron noise, i.e. branching noise, is treated in systems with time-varying
properties. Neutron noise in systems with temporally varying properties is called ‘power reactor noise’. Neutron
fluctuations in low power steady systems and high power systems with fluctuating parameters have constituted
two disjoint areas so far which were treated with different types of mathematical tools and were assumed to
be valid in non-overlapping operational areas. The results in Chapter 6 are hence the first to establish a bridge
between zero power noise and power reactor noise. Due to space limitations, the Langevin technique and the
theory of the parametric noise are not discussed. The interested reader is referred to the excellent monographs
by Van Kampen [14] and Williams [11].

Since the generating functions play a decisive role in many considerations of this book, the theorems most
frequently used in the derivations are summarised in Appendix A.

This book is not primarily meant for mathematicians, rather for physicists and engineers, and notably for
those working with branching processes in practice, and in the first place for physicists being concerned with
reactor noise investigations and problems of nuclear safeguards. However, it can also be useful for researchers
in the field of biological physics and actuarial sciences.

The authors are indebted to many colleagues and friends who contributed to the realisation of this book in
one way or another and with whom they collaborated during the years. One of us (I.P) is particularly indebted
to M.M.R.. Williams, from whom he learnt immensely on neutron noise theory and with whom his first paper
on branching processes was published. He also had, during the years, a very intensive and fruitful collaboration
with several Japanese scientists, in particular with'Y. Yamane andY. Kitamura of Nagoya University. Chapters 9
and 10 are largely based on joint publications. Research contacts and discussions on stochastic processes and
branching processes with H. Konno of the University of Tsukuba are acknowledged with thanks. Parts of this
book were written during an inspiring visit to Nagoya and Tsukuba. The experimental results given in the
book come from the Kyoto University Critical Assembly at KURRUI, and contributions from the KURRI
staff are gratefully acknowledged. The chapter on nuclear safeguards is largely due to a collaboration with Sara
A. Pozzi of ORNL, who introduced this author to the field.

Both authors are much indebted to Maria Pazsit, whose contributions by translating early versions of the
chapters of Part I from Hungarian can hardly be overestimated. She has also helped with typesetting and
editing the LaTeX version of the manuscript, as well as with proofreading. The authors acknowledge with
thanks constructive comments on the manuscript from M.M.R.. Williams and H. van Dam and thank S. Croft
for reading Chapter 11 and giving many valuable comments.

Without the funding contribution of many organisations this book would not have been possible. Even if
funding specifically for this book project was not dominating, it is a must to mention that the research of one
of the authors (I.P) was supported by the Swedish Nuclear Inspectorate (SKI), the Ringhals power plant, the
Swedish Centre for Nuclear Technology (SKC), the Adlerbert Research Foundation, the Japan Society for the
Promotion of Science (JSPS) and the Scandinavia—Japan Sasakawa Foundation. Their contribution is gratefully
acknowledged.

We had no ambition to cite all published work related to the problems treated in this monograph. The
books and papers listed in the ‘List of Publications’ represent merely some indications to guide the reader.
One has to mention the excellent review of source papers in reactor noise by Saito [15]. This review contains
practically all of the important publications until 1977 which are in strong relation with the topic of this book.

Imre Pazsit
Gothenburg
Lénard Pal
Budapest
February 2007
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Description

Symbol of probability

Symbol of expectation

Symbol of variance

Intensity of a reaction

Number of progeny (neutrons) in one reaction

Probability of {v =k}

Basic generating function

Expectation of the progeny number in one reaction

Second factorial moment of the progeny number in one reaction
Total intensity of absorption

Intensity of renewal

Intensity of multiplication

Number of particles at time ¢

Probability of finding n particles at time ¢ in the case of one starting
particle

Generating function of p,(t)

Number of particles produced by one injection (spallation) event
Probability of {q =j}; probability that there are j emitted neutrons
per spallation event

Generating function of probability

Expectation of the particle number produced by one injection
event; expectation of the number of neutrons emitted per spallation
event

Second factorial moment of the particle number produced by
one injection event; second factorial moment of the number of
neutrons emitted per spallation event

Diven factors of v and q

Intensity of the injection process at time ¢

Number of particles at time ¢ in the case of particle injection
Probability of finding » particles at time ¢ if the particle injection
started at t) <t

Generating function of P,(t|ty)

Multiplication intensity (q; > 1)

Decay intensity (q1 < 1)

Expectation of n(t)

Second factorial moment of n(t)

Expectation of N(f)

Second factorial moment of N(f)

Number of absorptions in the time interval [t —u, t],u>0
Probability of absorbing n particles in the time interval [t — u, t] in
the case of one starting particle
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case of particle injection
Probability of absorbing n particles in the time interval [t — u, t] in
the case of particle injection

Expectation of the number of absorbed particles in the time
interval [f — u, t] in the case of one starting particle

Second factorial moment of the number of absorbed particles in
the time interval [t — u, f] in the case of one starting particle

Expectation of the number of absorbed particles in the time
interval [t — u, t] in the case of particle injection

Second factorial moment of the number of absorbed particles in
the time interval [t — u, t] in the case of particle injection
Variance of N, (t — u, t)

Medium is in the state Sy at time ¢

Subset of the coordinate-velocity space

Phase point in the coordinate-velocity space

Number of neutrons in the subset { at time ¢

Probability of finding n neutrons in the subset ¢/ at time t, when
one neutron started from the phase point ug at time fy <t
Expectation of the number of neutrons in the subset U at time ¢,
when one neutron started from the phase point ug at time fy <t
Second factorial moment of the number of neutrons in the subset
U at time ¢, when one neutron started from the phase point u at
ume t) <t

Number of the delayed neutron precursors at time ¢

Number of the detected neutrons in the time interval [#4, ]
Intensity of capture

Intensity of fission

Intensity of detection

Decay constant

Source intensity

Probability of emitting # neutrons and m precursors in one fission
Generating function of py(n, m)

Average number of prompt neutrons per fission

Average number of delayed neutrons per fission

Average number of neutrons per fission

Effective delayed neutron fraction

Reeactivity

Prompt neutron generation time

Prompt neutron decay constant used in Chapters 9 and 10
Detector efficiency

Probability of finding N neutrons and C precursors at time f in
the system driven by a source, and of counting Z neutrons in the
time interval [0, ¢]

Generating function of P(N, C, Z, t|t))

Asymptotic expectation of the number of detected neutrons in the
time interval [0, f]

Modified second factorial moment



List of Most Frequently Used Notations

Xvii

Symbol
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P(N,C,Z,T,1)

gy, v, T,1)
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Description

Asymptotic modified second factorial moment

Y (t) in the Feynman-alpha formula

Probability that there are n neutrons and ¢ precursors at time t in the
system, induced by one initial neutron at =0, and there have been z
detector counts in the time interval [t — T, {]

Probability that there are N neutrons and C precursors at time ¢ in the
system, induced by a source of intensity S, and that there have been Z
detector counts in the time interval [t — T, f], provided that there were
no neutrons and precursors in the system at time =0 and no neutron
counts have been registered up to time t =0

Generating function of p(n, ¢, z, T, t)

Generating function of P(N, C, Z, T, t)

Total number of neutrons produced in a cascade

Total number of gamma photons produced in a cascade

Neutron singles

Neutron doubles

Neutron triples

Leakage multiplication

Average number of neutrons generated in a sample

Gamma multiplication per one initial neutron

Gamma singles

Gamma doubles

Gamma triples

Number distribution of neutrons generated in a sample

Number distribution of gamma photons generated in a sample
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