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Preface

This book is based on several courses given by the authors since 1966. It
introduces the reader to the representation theory of compact Lie groups.

We have chosen a geometrical and analytical approach since we feel
that this is the easiest way to motivate and establish the theory and to indicate
relations to other branches of mathematics. Lie algebras, though mentioned
occasionally, are not used in an essential way. The material as well as its
presentation are classical; one might say that the foundations were known to
Hermann Weyl at least 50 years ago.

Prerequisites to the book are standard linear algebra and analysis,
including Stokes’ theorem for manifolds. The book can be read by German
students in their third year, or by first-year graduate students in the United
States.

Generally speaking the book should be useful for mathematicians with
geometric interests and, we hope, for physicists.

At the end of each section the reader will find a set of exercises. These vary
in character : Some ask the reader to verify statements used in the text, some
contain additional information, and some present examples and counter-
examples. We advise the reader at least to read through the exercises.

The book is organized as follows. There are six chapters, each containing
several sections. A reference of the form III, (6.2) refers to Theorem (Defi-
nition, etc.) (6.2) in Section 6 of Chapter III. The roman numeral is omitted
whenever the reference concerns the chapter where it appears. References to
the Bibliography at the end of the book have the usual form, e.g. Weyl [1].

Naturally, we would have liked to write in our mother tongue. But we
hope that our English will be acceptable to a larger mathematical community,
although any personal manner may have been lost and we do not feel
competent judges on matters of English style.



viii Preface

Arunas Liulevicius, Wolfgang Liick, and Klaus Wirthmiiller have read
the manuscript and suggested many improvements. We thank them for

their generous help. We are most grateful to Robert Robson who translated
part of the German manuscript and revised the whole English text.
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CHAPTER I |
Lie Groups and Lie Algebras

In this chapter we explain what a Lie group is and quickly review the basic
concepts of the theory of differentiable manifolds. The first section illustrates
the notion of a Lie group with classical examples of matrix groups from
linear algebra. The spinor groups are treated in a separate section, §6, but
the presentation of the general theory of representations in this book pre-
supposes no knowledge of spinor groups. They only appear as examples
which, although important, may be skipped. In §§2, 3, and 4 we construct the
exponential map and exploit it to obtain elementary information about the
structure of subgroups and quotients, and in §5 we explain how to construct
an invariant integral using differential forms. We quote Stokes’ theorem to
get a result about mapping degrees which we shall use in Chapter IV.

1. The Concept of a Lie Group and the
Classical Examples

The concept of a Lie group arises naturally by merging the algebraic notion
of a group with the geometric notion of a differentiable manifold. However,
the classical examples, as well as the methods of investigation, show the
theory of Lie groups to be a significant geometric extension of linear algebra
and analytic geometry.

(1.1) Definition. A Lie group is a differentiable manifold G which is also a
group such that the group multiplication

u:Gx G- G



2 L. Lie Groups and Lie Algebras

(and the map sending g to g~ ') is a differentiable map. A homomorphism
of Lie groups is a differentiable group homomorphism between Lie groups.

For us the word differentiable means infinitely often differentiable.
Throughout this book we use the words differentiable, smooth, and C® as
synonymous.

The identity map on a Lie group is a homomorphism, and composing
homomorphisms yields a homomorphism—Lie groups and homomor-
phisms form a category. One may define the usual categorical notions: in
particular, an isomorphism (denoted by =) is an invertible homomorphism.

We will use e or 1 to denote the identity element of G, although we will
sometimes use E when considering a matrix group and 0 when considering
an additive abelian group.

The reader should know what a group is, and the concept of a differen-
tiable manifold should not be new. Nonetheless, we review a few facts about
manifolds.

(1.2) Definition. An n-dimensional (differentiable) manifold M™ is a Hausdorff
topological space with a countable (topological) basis, together with a
maximal differentiable atlas. This atlas consists of a family of charts
h;: U, - U, = R", where the domains of the charts, {U,}, form an open
cover of M", the U are open in R", the charts (local coordinates) h; are
homeomorphisms, and every change of coordinates h;, = h, - h; " is differ-
entiable on its domain of definition h,(U; n U)).

—
h.
Ui

Figure 1

The atlas is maximal in the sense that it cannot be enlarged to another
differentiable atlas by adding more charts, so any chart which could be added
to the atlas in a consistent fashion is already in the atlas.

A continuous map f: M — N of differentiable manifolds is called
differentiable if, after locally composing with the charts of M and N, it induces
a differentiable map of open subsets of Euclidean spaces.



1. The Concept of a Lic Group and the Classical Examples 3

The reader may find an elementary introduction to the basic concepts of
differentiable manifolds in the books by Brocker and Janich [1] or Guillemin
and Pollak [1], but we will assume little in the way of background. We now
turn to the examples which, as previously mentioned, one more or less knows
from linear algebra.

(1.3) Every finite-dimensional vector space with its additive group structure
is a Lie group in a canonical way. Thus, up to isomorphism, we get the
groups R", n e Ng.

(1.4) The torus R"/Z" = (R/Z)" = (S')" is a Lie group. Here S'=
{z € C||z| = 1} is the unit circle viewed as a multiplicative subgroup of C,
and the isomorphism R/Z — S' is induced by t — e?™". The n-fold product
of the circle with itself has the structure of an abelian Lie group due to the
following general remark:

(1.5) If G and H are Lie groups, so is G x H with the direct product of the
group and manifold structures on G and H.

G x H
Figure 2

It will turn out that every connected abelian Lie group is isomorphic to the
product of a vector space and a torus (3.6).

(1.6) Let V be a finite-dimensional vector space over R or C. The set Aut(V)
of linear automorphisms of V is an open subset of the finite-dimensional
vector space End(V) of linear maps ¥V — V, because Aut(V) =
{4 € End(V)|det(4) # 0} and the determinant is a continuous function.
Thus Aut(V) has the structure of a differentiable manifold. After the intro-
duction of coordinates, the group operation of Aut(¥) is matrix multiplica-
tion, which is algebraic and hence differentiable. Therefore Aut(V) has a
canonical structure as a Lie group, and we get the groups

GL(n, R) = Autg(R™) and GL(n, C) = Aut(C").

Linear maps R" — R* may be described by (k x n)-matrices, and, in
particular, GL(n, R) is canonically isomorphic to the group of invertible
(n x n)-matrices. Thus we will think of GL(n, R), its classical subgroups
SL(n, R), O(n), SO(n), ..., and GL(n, C) as matrix groups.



4 1. Lie Groups and Lie Algebras

The group GL(n, R) has two connected components on which the sign
of the determinant is constant. Automorphisms with positive determinant
form an open and closed subgroup GL*(n, R). It is connected because
performing elementary row and column operations which do not involve
multiplication by a negative scalar does not change components.

These linear groups yield many others once one knows, as we will show
in (3.11) and (4.5), that a closed subgroup of a Lie group and the quotient of
a Lie group by a closed normal subgroup inherit Lie group structures.

(1.7) As a result we get the groups
SL(n, R) = {4 € GL(n, R)|det(4) = 1}, and
SL(n, C) = {4 € GL(n, C)|det(4) = 1},
the special linear groups over R and C. We also get the projective groups
PGL(n, R) = GL(n, R)/R* and PGL(n, C) = GL(n, C)/C*,

where R* = R\ {0} and C* = C\ {0} are embedded as the subgroups of
scalar multiples of the identity matrix. The projective groups are groups of
transformations of projective spaces, see (1.16), Ex. 11.

In this book, however, we are primarily interested in compact groups, so
we recall the following closed subgroups of GL(n, R) from linear algebra:

(1.8) The orthogonal groups O(n) = {4 e GL(n, R)|'4 - A = E}, where ‘4
denotes transpose and E is the identity matrix. Analogously there is the
unitary group U(n) = {A e GL(n, C)|*4- A = E}, where *A ='4 is the
conjugate transpose of 4. Elements of O(n) are called orthogonal and ele-
ments of U(n) are called unitary. On R" there is an inner product, the standard
Euclidean scalar product

CRDEIDIE N
v=1
and on C" one has the standard Hermitian product
<x7 y> = Z Xy '.vv'
v=1

O(n) (resp. U(n)) consists of those automorphisms which preserve the inner
product on R" (resp. C"), i.e., those automorphisms A for which

(Ax, Ay = (x, Y>

O(n) is also split into two connected components by the values +1 of the
determinant, and one of these is the special orthogonal group

SO(n) = {4 € O(n)|det(4) = 1}.



