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PR EVFACE

To the First Edition

“I understand mathematics but I just can’t do proofs.”

Our experience has led us to believe that the remark above, though contra-
dictory, expresses the frustration many students feel as they pass from beginning
calculus to a more rigorous level of mathematics. This book developed from a
series of lecture notes for a course at Central Michigan University that was
designed to address this lament. The text is intended to bridge the gap between
calculus and advanced courses in at least three ways. First, it provides a firm
foundation in the major ideas needed for continued work. Second, it guides
students to think and to express themselves mathematically—to analyze a
situation, extract pertinent facts, and draw appropriate conclusions. Finally, we
present introductions to modern algebra and analysis of sufficient depth to
capture some of their spirit and characteristics.

We begin in Chapter 1 with a study of the logic required by mathematical
arguments, discussing not formal logic but rather the standard methods of
mathematical proof and their validity. Methods of proof are examined in detail,
and examples of each method are analyzed carefully. Denials are given special
attention, particularly those involving quantifiers. Techniques of proof given in
this chapter are used and referred to later in the text. Although the chapter was
written with the idea that it may be assigned as out-of-class reading, we find
that most students benefit from a thorough study of logic.

Much of the material in Chapters 2, 3, and 4 on sets, relations, and
functions, will be familiar to the student. Thus, the emphasis is on enhancing
the student’s ability to write and understand proofs. The pace is deliberate. The
rigorous approach requires the student to deal precisely with these concepts.

Chapters 5, 6, and 7 make use of the skills and techniques the student has
acquired in Chapters 1 through 4. These last three chapters are a cut above the
earlier chapters in terms of level and rigor. Chapters 1 through 4 and any one of
Chapters 5, 6, or 7 provide sufficient material for a one-semester course. An
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alternative is to choose among topics by selecting, for example, the first two
sections of Chapter 5, the first three sections of Chapter 6, and the first two
sections of Chapter 7.

Chapter 5 begins the study of cardinality by examining the properties
of finite and infinite sets and establishing countability or uncountability for
the familiar number systems. The emphasis is on a working knowledge of
cardinality—particularly countable sets, the ordering of cardinal numbers,
and applications of the Cantor—Schréeder—Bernstein Theorem. We include a
brief discussion of the Axiom of Choice and relate it to the comparability of
cardinals.

Chapter 6, which introduces modern algebra, concentrates on the concept
of a group and culminates in the Fundamental Theorem of Group Homo-
morphisms. The idea of an operation preserving map is introduced early and
developed throughout the section. Permutation groups, cyclic groups, and
modular arithmetic are among the examples of groups presented.

Chapter 7 begins with a description of the real numbers as a complete
ordered field. We continue with the Heine—Borel Theorem, the Bolzano—
Weierstrass Theorem, and the Bounded Monotone Sequence Theorem (each
for the real number system), and then return to the concept of completeness.

Exercises marked with a solid star  have complete answers at the back
of the text. Open stars indicate that a hint or a partial answer is provided.
“Proofs to Grade” are a special feature of most of the exercise sets. We present
a list of claims with alleged proofs, and the student is asked to assign a letter
grade to each “proof” and to justify the grade assigned. Spurious proofs are
usually built around a single type of error, which may involve a mistake in logic,
a common misunderstanding of the concepts being studied, or an incorrect
symbolic argument. Correct proofs may be straightforward, or they may pre-
sent novel or alternate approaches. We have found these exercises valuable
because they reemphasize the theorems and counterexamples in the text and
also provide the student with an experience similar to grading papers. Thus, the
student becomes aware of the variety of possible errors and develops the ability
to read proofs critically.

In summary, our main goals in this text are to improve the student’s
ability to think and write in a mature mathematical fashion and to provide a
solid understanding of the material most useful for advanced courses. Student
readers, take comfort from the fact that we do not aim to turn you into
theorem-proving wizards. Few of you will become research mathematicians.
Nevertheless, in almost any mathematically related work you may do, the kind
of reasoning you need to be able to do is the same reasoning you use in proving
theorems. You must first understand exactly what you want to prove (verify,
show, or explain), and you must be familiar with the logical steps that allow
you to get from the hypothesis to the conclusion. Moreover, a proof is the
ultimate test of your understanding of the subject matter and of mathematical
reasoning.

We are grateful to the many students who endured earlier versions of the
manuscript and gleefully pointed out misprints. We acknowledge also the
helpful comments of Edwin H. Kaufman, Melvin Nyman, Mary R. Wardrop,
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and especially Douglas W. Nance, who saw the need for a course of this kind
at CMU and did a superb job of reviewing the manuscript.

We thank our reviewers: William Ballard of the University of Montana,
Sherralyn Craven of Central Missouri State University, Robert Dean of Ste-
phen F. Austin State University, Harvey Elder of Murray State University,
Hoseph H. Oppenheim of San Francisco State University, Joseph Teeters of
the University of Wisconsin, Dale Schoenefeld of the University of Tulsa,
Kenneth Slonnegar of State University of New York at Fredonia, and Douglas
Smith of University of the Pacific. And we wish to thank Karen St. Andre for
her superb and expeditious typing of the manuscript.

Third Edition

The intent of the second and third editions has been to rework and revise the
text selectively while maintaining its character as an introduction both to the
foundational topics of sets, relations, and functions and to the rigor of mathe-
matical thinking and writing. Explanations, examples, and exercises have been
added or revised throughout the text. There are extensive reworkings in Chap-
ters 1 and 5. A new optional section 1.6 expands on examples of proof tech-
niques. The optional section on graphs added to Chapter 3 in the second edition
has been rewritten in the third.

We have resisted the addition of topics that would be “nice” but peripheral
to the core material of the first four chapters. We continue to find that most
instructors follow the development of the text, covering either Chapters 1-4, or
1-5, and use portions of the last independent chapters to introduce topics from
algebra or analysis as time permits. Many instructors prefer to treat selectively
the cardinality topics in Chapter 5. One common approach is to treat the
definitions and results in the first two sections on finite and countable sets, the
definition of cardinal number and Cantor’s Theorem from the next section, and
the facts about countable sets in the last section of Chapter 5.

We would like to thank our reviewers for the second and third editions:
Mangho Ahuja, Southeast Missouri State University; David Barnette, Univer-
sity of California at Davis; Harry Coonce, Mankato State University; Michael
J. Evans, North Carolina State University; Benjamin Freed, Clarion Uni-
versity of Pennsylvania; Robert Gamble, Winthrop College; Dennis Garity,
Oregon State University; Robert P. Hunter, Pennsylvania State University;
Jack Johnson, Brigham Young University-Hawaii; Daniel Kocan, State Uni-
versity of New York, Potsdam; James McKinney, California State Polytechnic
University; Yves Nievergelt, Eastern Washington University; Victor Schneider,
University of Southwestern Louisiana; and Lawrence Williams, University of
Texas, San Antonio. We also thank Joan S. Marsh, Susan L. Reiland, Craig
Barth, Jeremy Hayhurst, and all the staff at Brooks/Cole for their professional
work and friendly encouragement.

Richard St. Andre
Douglas Smith
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CHAPTETR 1

Logic and Proofs

Although mathematics is both a science and an art, special characteristics
distinguish mathematics from the humanities and from other sciences. Par-
ticularly important is the kind of reasoning that typifies mathematics. The
natural or social scientist generally makes observations of particular cases or
phenomena and seeks a general theory that describes or explains the observa-
tions. This approach is called inductive reasoning, and it is tested by making
further observations. If the results are incompatible with theoretical expectations,
the scientist usually must reject or modify the theory.

The mathematician, too, frequently uses inductive reasoning as he or she
attempts to describe patterns and relationships among quantities and struc-
tures. The characteristic thinking of the mathematician, however, is deductive
reasoning, in which one uses logic to draw conclusions based on statements
accepted as true. The conclusions of a mathematician are proved to be true,
provided that the assumptions are true. If the results of a mathematical theory
are deemed incompatible with some portion of reality, the fault lies not in the
theory but with the assumptions about reality that make the theory inappli-
cable to that portion of reality. Indeed, the mathematician is not restricted to
the study of observable phenomena, even though one can trace the develop-
ment of mathematics back to the need to describe spatial relations (geometry)
and motion (calculus) or to solve financial problems (algebra). Using logic,
the mathematician can draw conclusions about any mathematical structure
imaginable.

The goal of this chapter is to provide a working knowledge of the basics
of logic and the idea of proof, which are fundamental to deductive reason-
ing. This knowledge is important in many areas other than mathematics.
For example, the thought processes used to construct an algorithm for a
computer program are much like those used to develop the proof of a
theorem.



Chapter 1 Logic and Proofs

1.1

Propositions and Connectives

Natural languages such as English allow for many types of sentences. Some
sentences are interrogatory (Where is my sweater?), others exclamatory (Oh,
no!), while others have a definite sense of truth to them (Abe Lincoln was the
first U.S. president.). A proposition is a sentence that is either true or false. Thus
a proposition has exactly one truth value: true which we denote by T, or false
which we denote by F.

Some examples of propositions are:

(a) ﬁ is irrational.

b) 1+1=5.
(¢) The elephant will become extinct on the planet Earth before the rhinoc-
eros.

(d) Julius Caesar had two eggs for breakfast on his tenth birthday.

We are not concerned here with the difficulty of establishing the actual truth
value of a proposition. We readily see that proposition (a) has the value T while
(b) has the value F. It may take many years to determine whether proposition
(c) is true or false, but its truth value will certainly be established if either animal
ever becomes extinct. If both species (and the Earth) somehow survive forever,
the statement is false. There may be no way ever to determine what value
proposition (d) has. Nevertheless, each of the above is either true or false, hence
is a proposition.

Here are some sentences that are not propositions:

(¢) What did you say?
) x*=36
(g) This sentence is false.

Sentence (e) is an interrogative statement that has no truth value. Sentence
(f) could be true or false depending on what value x is assigned. We shall study
sentences of this type in section 1.3.

Statement (g) is an example of a sentence that is neither true nor false,
and is referred to as a paradox. If (g) is true, then by its meaning (g) must
be false. On the other hand, if (g) is false, then what it purports is false,
so (g) must be true. Thus, (g) can have neither T nor F for truth value.
The study of paradoxes such as this has played a key role in the develop-
ment of modern mathematical logic. A famous example of a paradox for-
mulated by the English logician Bertrand Russell is discussed in section
2.1.

Propositions (a)—(d) are simple or atomic in the sense that they do not have
any other propositions as components. Compound propositions can be formed
by using logical connectives with simple propositions.
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Definitions Given propositions P and Q,
The conjunction of P and Q, denoted P A Q, is the proposition “P
and Q.” P A Q is true exactly when both P and Q are true.

The disjunction of P and Q, denoted P v Q, is the proposition “P or
Q.” P v Q is true exactly when at least one of P or Q is true.

The negation of P, denoted ~ P, is the proposition “not P.” ~P is
true exactly when P is false.

If Pis “l # 3” and Q is “7 is odd,” then

P A Qis“l #3and 7is odd.”
P v Qis“l #3or7isodd”
~Q is “It is not the case that 7 is odd.”
Since in this example both P and Q are true, P A Q and P v Q are true, while

~Q is false.
All of the following are true propositions:

“It is not the case that \/E >4” 7T

\/5 < \/3 or chickens have lips.” T

“Venus is smaller than Earthor 1 +4=5" T
“6<7and7<8” A

All of the following are false:
“1955 was a bad year for wine and = is rational.”
“It is not the case that 10 is divisible by 2.”
“2* = 16 and a quart is larger than a liter.” -

=

Other connectives commonly used in English are but, while, and although,
each of which would normally be translated symbolically with the conjunction
connective. A variant of the connective or is discussed in the exercises.

Example. Let M be “Milk contains calcium” and I be “Italy is a continent.”
Since M has the value T and I has the value F,
“Italy is a continent and milk contains calcium,” symbolized I A M, is false;
“Italy is a continent or milk contains calcium,” I v M, is true;
“It is not the case that Italy is a continent,” ~ I, is true.

Animportant distinction must be made between a proposition and the form
of a proposition. In the previous example, “Italy is a continent and milk
contains calcium” is a proposition with a single truth value (F), while the
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propositional form P A Q, which may be used to symbolically represent the
sentence, has no truth value in and of itself. The form P A Q is an expres-
sion that obtains a value T or F after specific propositions are designated
for P and Q (when for instance, we let P be “Italy is a continent” and Q be
“Milk contains calcium”), or when the symbols P and Q are given truth
values.

By the form of a compound proposition we mean how the proposition is
put together using logical connectives. For components P and Q, P A Q and
P v Q are two different propositional forms. Informally, a propositional form
is an expression involving finitely many logical symbols (such as A and ~)
and letters. Expressions that are single letters or are formed correctly from
the definitions of connectives are called well-formed formulas. For example,
(P A (Q v ~Q))is well formed, whereas (P v Q~),(~P ~Q),and v Q are not.
A more precise definition and study of well-formed formulas may be found in
Elliot Mendelson’s An Introduction to Mathematical Logic (D. Van Nostrand,
1979).

The truth values of a compound propositional form are readily obtained
by exhibiting all possible combinations of the truth values for its components
in a truth table. Since each connective A and v involves two components, their
truth tables must list the four possible combinations of the truth values of those
components. The truth tables for P A Q and P v Q are

P Q PAQ P Q PvQ
T T T T T T
F T F F T T
T F F T F T
F F F F F F

Since the value of ~ P depends only on the two possible values for P, its truth
table is

~P

Frequently you will encounter compound propositions with more than
two simple components. The propositional form (P A Q) v ~R has three
simple components; it follows that there are 2° = 8 possible combinations
of values for P, Q, R. The two main components are P A Q and ~R. We
make truth tables for these and combine them by using the truth table for
V.
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P 0 R PAQ ~R (PAQ)V ~R
T T T T F T
F T T F F F
T F T F F F
F F T F F F
T T F T T T
F T F F T T
T F F F T T
F F F F T T.

The propositional form (~Q v P) A (R v S) has 16 possible combinations
of values for P, Q, R, S. Two main components are ~Q v Pand R v S.1Its truth
table is shown here:

P Q@ R S ~Q ~QVP RvVS (~QVP)ARVS)
T T T T F T T T
F T T T F F T F
T F T T T T T T
F F T T T T T T
T T F T F T T T
F T F T F F T F
T F F T T T T T
F F F T T T T T
T T T F F T T T
F T T F F F T F
T F T F T T T T
F F T F T T T T
T T F F F T F F
F T F F F F F F
T F F F T T F F
F F F F T T F F

Two propositions P and Q are equivalent if and only if they have the same
truth value. The propositions “1 + 1 = 2” and “6 < 10” are equivalent (even
though they have nothing to do with each other) because both are true. The
ability to write equivalent statements from a given statement is an important
skill in writing proofs. Of course, in a proof we expect some logical connection
between such statements. This connection may be based on the form of the
propositions.

Definition Two propositional forms are equivalent if and only if
they have the same truth tables.
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For example, the propositional forms P v (Q A P) and P are equivalent.
To show this, we examine their truth tables.

P 0 QAP Pv(QAP)
T T T T
F T F F
T F F T
F F F F

Since the P column and the P v (Q A P)column are identical, the propositional
forms are equivalent. This means that, whatever propositions we choose to use
for P and for Q, the results will be equivalent. If we let P be “91 is prime” and
Q be “1 + 1 = 2,” then “91 is prime” is equivalent to the proposition “91 is
prime, or 1 + 1 = 2 and 91 is prime.” With these propositions for P and Q, Q
is true and both P and P v (Q A P) are false. Thus, we have an instance of the
second line of the truth table.

Any proposition P is equivalent to itself. Also the propositional forms P
and ~(~ P) are equivalent. Their tables are

~P  ~(~P)
T F T
F T F

Definition A denial of a proposition S is any proposition
equivalent to ~S.

By definition, the negation ~ P is a denial of the proposition P, but a denial
need not be the negation. A proposition has only one negation but may have
several denials. The ability to rewrite the negation of a proposition into a useful
denial will be very important for writing indirect proofs (see section 1.4).

Example. The proposition P: “n is rational” has negation ~ P: “It is not the
case that = is rational.” Some useful denials are

“r is irrational.”
“r is not the quotient of two integers.”
“The decimal expansion of 7 is not repeating.”

Note that since P is false, all denials of P are true.

Example. The proposition “The water is cold and the soap is not here” has
two components, C: “The water is cold” and H: “The soap is here.” The
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negation, ~(C A ~ H), is “It is not the case that the water is cold and the soap
is not here.” Some other denials are

“Either the water is not cold or the soap is here.”

“It is not the case that the water is cold and the soap is not here and the
water is cold.”

It may be verified by truth tables that the propositional forms ~C v H and
~[(C A ~H) A C] are equivalent to ~(C A ~ H).

Note that the negation in the last example is ambiguous when written in
English. Does the “It is not the case” refer to the entire sentence or just to
the component “The water is cold”? Ambiguities such as this are allowable
in conversational English but can cause trouble in mathematics. To avoid
ambiguities we introduce delimiters such as parentheses (), square brackets
[ 1, and braces { }. The negation above may be written symbolically as
~(C A ~H).

To avoid writing large numbers of parentheses, we use the rule that, first,
~ applies to the smallest proposition following it, then A connects the smallest
propositions surrounding it, and finally, v connects the smallest propositions
surrounding it. Thus, ~P v Q is an abbreviation for (~ P) v Q. The negation
of the disjunction P v Q must be written with parentheses ~(P v Q). The
propositional form P A ~Q v R abbreviates [P A (~Q)] v R. As further
examples, ’

P v Q A R abbreviates P v [Q A R].
P A ~Q v R abbreviates [P A (~Q)] v R.
~P v ~Q.abbreviates (~ P) v (~Q).

When the same connective is used several times in succession, parentheses
may also be omitted. We reinsert parentheses from the left, so that P v Q v R
isreally (P v Q) v R. Forexample, R A P A ~P A Q abbreviates [(R A P) A
(~P)] A Q,whereas R v P A ~P v Q, which does not use the same connective
consecutively, abbreviates (R v [P A (~P)]) v Q. Leaving out parentheses is
not required; some propositional forms are easier to read with a few well-chosen
“unnecessary” parentheses.

Some compound propositional forms always yield the value true just
because of the nature of their form. Tautologies are propositional forms that
are true for every assignment of truth values to their components. Thus a
tautology will have the value true regardless of what proposition(s) we select
for the components. For example, the Law of Excluded Middle, P v ~ P, is
a tautology. Its truth table is

~P  Pv~P

F T
T T

-
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We know that “the ball is red or the ball is not red” is true because it has the
form of the Law of Excluded Middle.

Example. Showthat(P v Q) v (~P A ~Q)is a tautology. We see that the
truth table for the propositional form is

PvQ ~P ~Q0 ~PA~Q (PVOV(~PA~Q

mHTH | v
CEE NS
-
—=m-T
~-mm
T
— -

Thus (P v Q) v (~P A ~Q)is a tautology.

A contradiction is the negation of a tautology. Thus, ~(P v ~P) is a
contradiction. The negation of a contradiction is, of course, a tautology.

Conjunction, disjunction, and negation are very important in mathematics.
Two other important connectives, the conditional and biconditional, will be
studied in the next section. Other connectives having two components are not
as useful in mathematics, but some are extremely important in digital computer
circuit design.

Exercises

1.1

* b %

1. Which of the following are propositions?

(@) Where are my car keys?

(b) Christopher Columbus wore red boots at least once.

(¢) The national debt of Poland in 1938 was $2,473,596.38.

@) x*>0. 20-

e) Between January 1, 2205 and January 1, 2215, the population of the

world will double.
There are no zeros in the decimal expansion of =.

(g) She works in New York City.

(h) There are more than 5 false statements in this book and this statement
is one of them. Yoel \Jpus el bovs oH \\4,41 2o

(i) There are more than 5 false statements in this book and this statement
is not one of them.

2. Make truth tables for each of the following propositional forms.

@ PA~P b) Pv ~P

© PA@VR (P/\Q)V(P/\R)
€ PA~Q &§PA@VN®
@ PAQv ~0 ~(P A Q)

@ (Pv~Q AR () ~PAr~Q

(k) PAP M PAQVRA~S



