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Preface

The purpose of this text is to assist the student to acquire as thorough
an understanding of basic concepts in probability and statistics as is com-
patible with his mathematical background and the time available. The
aim is not only to introduce him to mathematical statistics, but also to
help prepare him for further study if he desires to undertake it. Thus,
concepts which the author regards as fundamental are discussed thoroughly,
while the student is given only a brief introduction to specialized methods.

This text was written originally for use in a one-semester, three-hour
course introductory to mathematical statistics, offered to students who
have studied the calculus but who have no formal background in probability
or mathematical statistics. To make the book useful for more extended
courses, however, additional material has been included. This additional
material is presented in starred chapters and sections which are largely
independent of one another; however, all presuppose the material presented
in unstarred sections in the first 92 pages. It will be seen that a desirable
feature of the book is its flexibility, which permits the teacher to shape the
course according to the special needs of his students and his personal
preferences. -

The unstarred sections in the first 92 pages cover what appears to the
author to be nearly the irreducible minimum background in probability
for an understanding of the basic concepts of statistical inference; it has
been his practice to devote the first six or seven weeks of the semester to
this material. The remainder of the semester has usually been devoted
to topics in the other unstarred chapters and sections. The teacher may
wish, depending on his class and on the time available, to omit some of
the proofs, particularly some of those in starred chapters and sections
which make greater demands on the mathematical maturity of the student.

A suggested one-semester course includes Chapters 1 through 10, 12, or
13, omitting starred sections. Either or both of Chapters 16 or 17 or
selected portions of them may be included in place of one or more of
Chapters 10, 12, or 13.

The teacher who wishes to take up some of the material in starred chap-
ters or sections may do so in any order he wishes, except that the material
on analysis of variance should be preceded by the chapter on sampling
from a normal population, and the discussion of normal regression should
be preceded by the chapter on regression as well as that on sampling from
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iv PREFACE

a normal population (cf. Organization Chart on page xi following Table
of Contents). Also, the later chapters utilize the x? distribution, which is
defined in the chapter on sampling from a normal population. However,
for use with those later chapters, the definition of the x> distribution may
be used without studying the chapter in which it appears.

Controversial questions in the foundations of probability are avoided;
probability spaces are introduced as useful mathematical models. In-
evitably, the teacher will feel that some topics have been omitted or
slighted which he would like to include or stress. In particular, there is
little work on multivariate analysis, a study of which the author feels
should be preceded by more work in mathematics (in particular, matrix
algebra) than is prerequisite for the course for which this text has been
designed.

The author wishes to express his gratitude to the reviewers for the pub-
lisher, whose comments were very helpful; to Professor Frederick Mosteller
in particular, for his many helpful suggestions for addition and revision
which have markedly improved the book and made it more useful. Dr.
Churchill Eisenhart, Dr. W. J. Youden, and their colleagues in the National
Bureau of Standards were most helpful in making available compilations
of published work of the Bureau for use as sources of problems. The
author is grateful to Mr. James K. Yarnold, who prepared a number of
the problems based on data taken from the literature. He is grateful also
to his colleagues Professor G. B. Collier for the use of his problem lists,
and Professor P. B. Burcham for his help and encouragement. The author
is further indebted to Professor Sir Ronald A. Fisher, Cambridge, to Dr.
Frank Yates, Rothamsted, and to Messrs. Oliver and Boyd Ltd., Edin-
burgh, for permission to reprint Table No. VII, from their book Statistical
Tables for Biological, Agricultural, and Medical Research. The publishers
also deserve the author’s gratitude for their untiring efforts toward the goal
of producing a text of maximal utility to teacher and student.

H. D. Bronk
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Introduction

Most of us manage to gain some experience with various games of
chance in one way or another, and have some intuitive grasp of the kind of
question with which probability theory has to deal. These concepts, made
precise and integrated into a working theory—probability theory—have a,
great many applications in many fields, and in particular, in statistics.
Indeed, probability forms the basis of the theory of statistical inference; it
provides the conceptual framework within which the ideas of statistical
inference may be discussed. Therefore the first part of this book is devoted
to ideas arising in the theory of probability which are essential for an under-
standing of mathematical statistics.

Applications of a mathematical theory are made through mathematical
models. That is, when faced with a “real,” concrete, or physical situation
to which he hopes to apply a mathematical theory, an investigator begins
by idealizing the situation so as to make a mathematical model. For
example, suppose & surveyor wishes to use measurements involving three
trees, two on his side of a river and a third on the opposite bank, to deter-
mine the width of the river. He begins by constructing a mathematical
model, in this case a geometric one. He idealizes the trees, replacing them

" by points, and introduces certain ideal elements, lines, which join them.
He makes use of the geometric concepts of distance and angle, which have
precise meanings only relative to his model and not relative to the actual
existing situation. He makes readings on his instruments and incorporates
the numerical results of his readings into his model as appropriate distances

*and angles. He then applies directly to his model the theory of plane
geometry (or trigonometry).

The investigator (statistican or other) who wishes to apply the theory of
probability must proceed in a similar fashion. The basic element in a
mathematical model designed for the application of probability is called a
probability space. The simplest of these we shall call elementary proba-
bility spaces. We shall state what we mean by an elementary probability
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4 AN INTRODUCTION TO MATHEMATICAL S8TATISTICS

space, and indicate some situations in which such a mathematical model
seems to be (and has proved to be) appropriate. Having thus gained some
experience with probabilistic concepts, we shall turn to more general proba-
bility spaces, and list axioms for the undefined elements (event, probability,
etc.) of probability theory in the same spirit as one does for the undefined
elements (point, line, ete.) of the theory of geometry. We shall continue
throughout the book to discuss special situations in which probability
models have proved useful, and shall not commit ourselves to any very
general propositions concerning the utility or non-utility of such models.



CHAPTER

1

Elementary Probability Spaces

1. Introduction. When we wish to analyze mathematically a given
situation, we have to begin by idealizing the situation, that is, by building
a mathematical model. Consider, for example, the experiment of tossing
a coin. Qur particular interest is focused on the features that there are
exactly two results possible, heads and tails, and that these are equally
likely. These features are emphasized in the construction of a model, con-
sisting of two elementary events, say H and T, and a probability 3 associated
with each. In general,

»  If an (idealized) proposed experiment can resull in any of an ex-
haustive set of N equally likely and mutually exclusive possibilities,
then an appropriate mathematical model is a set of N elementary
events, a probability 1/N being associated with each.

This ratio, 1/N, is referred to as the probability that a performance of the
experiment will result in a particular, specified one of the possibilities. We
may also be interested in the occurrence of at least one of a specified sub-
collection of the possibilities. Such a subcollection is called an event, and
its probability is defined to be the sum of the probabilities of the elementary
events in the subcollection. The elementary events of this subcollection,
we say, are favorable to the event, and we say the event occurs if the per-
formance of the experiment results in the occurrence of one of the possi-
bilities of that subcollection.

ExampLE 1. Suppose you hold a die, and propose to cast it. Thinking
about the experiment before you perform it, you will set up 2 mathematical
model containing 6 elementary events, a probability 1/6 being associated
with each. The event consisting of the elementary events 2, 4, 6 might be
described as ‘“the event that an even number of spots will turn up.” Three
elementary events are favorable to this event, and its probability is ac-
cordingly 3/6, or 1/2. You might then say that you have a 50-50 chance
of throwing an even number of spots.
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