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Preface to the Fifth Edition

v

The fifth edition includes additional material in all chapters, with the
greatest number of additions in Chapters 5 and 10. For instance, new
examples relating to analyzing greedy algorithms, minimizing highway
encounters, collecting coupons, and tracking the AIDS virus, as well as
additional material on compound Poisson processes appear in Chapter 5.
Chapter 10 includes new material on the theory of options pricing. The
arbitrage theorem is presented and its relationship to the duality theorem of
linear program is indicated. We show how the arbitrage theorem leads to
the Black-Scholes option pricing formula.

This edition also contains over 120 new exercises. There are two solutions
manuals for the text. One manual, which contains the solutions of all the
exercises of the text, is available only to instructors. In addition, over 100
exercises in the text are starred, and their solutions are available to students
in a separate solutions manual.
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Preface to the Fourth Edition

v

This text is intended as an introduction to elementary probability theory
and stochastic processes. It is particularly well-suited for those wanting to
see how probability theory can be applied to the study of phenomena in
fields such as engineering, management science, the physical and social
sciences, and operations research.

It is generally felt that there are two approaches to the study of probability
theory. One approach is heuristic and nonrigorous and attempts to develop
in the student an intuitive feel for the subject which enables him or her to
“‘think probabilistically.’’” The other approach attempts a rigorous develop-
ment of probability by using the tools of measure theory. It is the first
approach that is employed in this text. However, as it is extremely important
in both understanding and applying probability theory to be able to ‘‘think
probabilistically,’” this text should also be useful to students interested
primarily in the second approach.

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1
an axiomatic framework is presented, while in Chapter 2 the important
concept of a random variable is introduced.

Chapter 3 is concerned with the subject matter of conditional probability
and conditional expectation. ‘‘Conditioning’’ is one of the key tools of prob-
ability theory, and it is stressed throughout the book. When properly used,
conditioning often enables us to easily solve problems that at first glance
seem quite difficult. The final section of this chapter, not in the original
edition, presents applications to (1) a computer list problem, (2) a random
graph, and (3) the Polya urn model and its relation to the Bose-Einstein
distribution.

In Chapter 4 we come into contact with our first random, or stochastic,
process, known as a Markov chain, which is widely applicable to the study

xi



xii Preface to the Fourth Edition

of many real-world phenomena. New applications to generics and produc-
tion processes are presented. The concept of time reversibility is introduced
and its usefulness illustrated. In the final section we consider a model for
optimally making decisions known as a Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as
a counting process. In particular, we study a kind of counting process
known as a Poisson process. The intimate relationship between this process
and the exponential distribution is discussed.

Chapter 6 considers Markov chains in continuous time with an emphasis
on birth and death models. Time reversibility is shown to be a useful con-
cept, as it is in the study of discrete-time Markov chains. The final section
presents the computationally important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of
counting process more general than the Poisson. By making use of renewal
reward processes, limiting results are obtained and applied to various fields.

Chapter 8 deals with queueing, or waiting line, theory. After some
preliminaries dealing with basic cost identities and types of limiting prob-
abilities, we consider exponential queueing models and show how such
models can be analyzed. Included in the models we study is the important
class known as network of queues. We then study models in which some of
the distributions are allowed to be arbitrary.

Chapter 9 is concerned with reliability theory. This chapter will probably
be of greatest interest to the engineer and operations researcher.

Chapter 10 deals with Brownian motion and Chapter 11 with simulation.

Ideally, this text would be used in a one-year course in probability
models. Other possible courses would be a one-semester course in intro-
ductory probability theory (involving Chapters 1-3 and parts of others) or
a course in elementary stochastic processes. It is felt that the textbook is
flexible enough to be used in a variety of possible courses. For example,
I have used Chapters 5 and 8, with smatterings from Chapters 4 and 6, as
the basis of an introductory course in queueing theory.

There are many examples worked out throughout the text, and there are
also a large number of problems to be worked by students. Answers to
selected problems appear in the text, and a separate solutions manual is
available to instructors using the text.
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Chapter 1

Introduction to
Probability Theory

v

1.1. Introduction

Any realistic model of a real-world phenomenon must take into account
the possibility of randomness. That is, more often than not, the quantities
we are interested in will not be predictable in advance but, rather, will
exhibit an inherent variation that should be taken into account by the
model. This is usually accomplished by allowing the model to be prob-
abilistic in nature. Such a model is, naturally enough, referred to as a
probability model.

The majority of the chapters of this book will be concerned with different
probability models of natural phenomena. Clearly, in order to master both
the ‘“‘model building’’ and the subsequent analysis of these models, we must
have a certain knowledge of basic probability theory. The remainder of this
chapter, as well as the next two chapters, will be concerned with a study of
this subject.

1.2. Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not
predictable in advance. However, while the outcome of the experiment will
not be known in advance, let us suppose that the set of all possible outcomes
is known. This set of all possible outcomes of an experiment is known as the
sample space of the experiment and is denoted by S.

1



2 1 Introduction to Probability Theory

Some examples are the following.
1. If the experiment consists of the flipping of a coin, then

S={H,T}

where H means that the outcome of the toss is a head and 7 that it is a tail.
2. If the experiment consists of tossing a die, then the sample space is

§$=11,2,3,4,5,6}

where the outcome i means that / appeared on the die, i = 1, 2, 3,4, 5, 6.
3. If the experiment consists of flipping two coins then the sample space
consists of the following four points

S=\H, H),H,T),(T, H),(T,T)}

The outcome will be (H, H) if both coins come up heads; it will be (H, T)
if the first coin comes up heads and the second comes up tails; it will be
(T, H) if the first comes up tails and the second heads; and it will be (7, T")
if both coins come up tails.

4. If the experiment consists of tossing two dice, then the sample space
consists of the 36 points

(1, 1), (1,2), (1, 3), (1,4), (1,5), (1, 6)
2,1, 2,2, 2,3), 2,4), 2,95), 2,6)
s=/G1,G,2),3,3), 3,4, 3,5, (3,6)
4,1), 42), 4,3), 4,4, 4,5), 4,6)
5, 1), (5,2), (5,3), (5,4), (5,5), (5,6)
(6, 1), (6, 2), (6, 3), (6,4), (6,5), (6,6)

where the outcome (7, j) is said to occur if / appears on the first die and j
on the second die.

5. If the experiment consists of measuring the lifetime of a car, then the
sample space consists of all nonnegative real numbers. That is,

S=1[0,=)* &

Any subset E of the sample space S is known as an event. Some examples
of events are the following.

1'. In Example (1), if E = {H}, then E is the event that a head appears
on the flip of the coin. Similarly, if £ = {T'}, then E would be the
event that a tail appears.

* The set (a, b) is defined to consist of all points x such that @ < x < b. The set [a, b] is
defined to consist of all points x such that @ < x < b. The sets (a, b] and [a, b) are defined,
respectively, to consist of all points x such that ¢ < x < b and all points x such thata < x < b.



1.2. Sample Space and Events 3

2'. In Example (2), if E = {1}, then E is the event that one appears on the
toss of the die. If E = {2, 4, 6}, then E would be the event that an
even number appears on the toss.

3’. In Example (3), if E = {(H, H), (H, T)}, then E is the event that a
head appears on the first coin.

4'. In Example (4), if E = {(1, 6), (2, 5), (3, 4), 4, 3), (5, 2), (6, 1)}, then
E is the event that the sum of the dice equals seven.

5’. In Example (5), if E = (2, 6), then E is the event that the car lasts
between two and six years. €

For any two events E and F of a sample space S we define the new event
E U F to consist of all points which are either in E or in F or in both £ and
F. That is, the event E U F will occur if either E or F occurs. For example,
in (1) if E = {H} and F = {T}, then

EUF={H, T}

That is, £ U F would be the whole sample space S. In (2) if E = {1, 3, 5} and
F = {1, 2, 3}, then

EUF =(1,2,3,5)

and thus E U F would occur if the outcome of the die is either a 1 or 2 or
3 or 5. The event E U F is often referred to as the union of the event E and
the event F.

For any two events E and F, we may also define the new event EF),
referred to as the intersection of E and F, as follows. EF consists of all
points which are both in E and in F. That is, the event EF will occur only
if E and F occur. For example, in (2) if E = {1, 3, 5} and F = {1, 2, 3}, then

EF = {1, 3}

and thus EF would occur if the outcome of the die is either 1 or 3. In
example (1) if £ = {H} and F = {T'}, then the event EF would not consist
of any points and hence could not occur. To give such an event a name
we shall refer to it as the null event and denote it by . (That is, ¢J refers
to the event consisting of no points.) If EF = ¢, then E and F are said to
be mutually exclusive.

We also define unions and intersections of more than two events in a
similar manner. If E,, E,, ... are events, then the union of these events,
denoted by U5 _, E,, is defined to be that event which consists of all
points that are in E, for at least one value of n = 1,2, .... Similarly,
the intersection of the events E,, denoted by [],-, E,, is defined to be
the event consisting of those points that are in all of the events E,,
n=12,....



4 1 Introduction to Probability Theory

Finally, for any event E we define the new event E*, referred to as the
complement of E, to consist of all points in the sample space S which are
not in E. That is E€ will occur if and only if £ does not occur. In Example
@) if E = {1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then E€ will occur if the
sum of the dice does not equal seven. Also note that since the experiment
must result in some outcome, it follows that S = &J.

1.3. Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the
sample space S, we assume that a number P(F) is defined and satisfies the
following three conditions:

(i 0=<PE)=<1.
(i) P(S) = 1.
(iii) For any sequence of events E,, E,, ... which are mutually exclusive,
that is, events for which E,E,, = (ZJ when n # m, then

o8- § me

n=1 n=1
We refer to P(E) as the probability of the event E.
Example 1.1 1In the coin tossing example, if we assume that a head is
equally likely to appear as a tail, then we would have
P({H}) = P(T}) = %

On the other hand, if we had a biased coin and felt that a head was twice
as likely to appear as a tail, then we would have

P(H) =%, PUT)=3 &
Example 1.2 In the die tossing example, if we supposed that all six
numbers were equally likely to appear, then we would have
P({1}) = P({2}) = P({3})) = P({4)) = P({5)) = P({6)) = ¢ .

From (iii) it would follow that the probability of getting an even number
would equal

P((2, 4, 6}) = P({2})) + P({4}) + P({6})
-1 @
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Remark We have chosen to give a rather formal definition of prob-
abilities as being functions defined on the events of a sample space.
However, it turns out that these probabilities have a nice intuitive property.
Namely, if our experiment is repeated over and over again then (with
probability 1) the proportion of time that event E occurs will just be P(E).

Since the events E and E° are always mutually exclusive and since
E U E€ = S we have by (ii) and (iii) that
1 =P(S) = P(EUE") = P(E) + P(E°)
or
P(E) + P(E°) =1 (1.1)

In words, Equation (1.1) states that the probability that an event does not
occur is one minus the probability that it does occur.

We shall now derive a formula for P(E U F), the probability of all points
either in E or in F. To do so, consider P(E) + P(F), which is the probability
of all points in E plus the probability of all points in F. Since any point that
is in both E and F will be counted twice in P(E) + P(F) and only once in
P(E U F), we must have

P(E) + P(F) = P(EUF) + P(EF)
or equivalently
P(EUF) = P(E) + P(F) — P(EF) (1.2)

Note that in the case that £ and F are mutually exclusive (that is, when
EF = (), then Equation (1.2) states that

P(EUF) = P(E) + P(F) — P(Q)
= P(E) + P(F)

a result which also follows from condition (iii). (Why is P(ZJ) = 07)
Example 1.3 Suppose that we toss two coins, and suppose that we
assume that each of the four points in the sample space

S=1{H,H),H,T),(T,H),(T,T);
are equally likely and hence have probability 1. Let

E ={(H,H),H,T) and F=1{(H,H),(T,H)}

That is, E is the event that the first coin falls heads, and F is the event that
the second coin falls heads.



