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PREFACE

Algebraic Topology is one of the major creations of twentieth-century
mathematics. Its influence on other parts of mathematics, such as algebra
[38], number theory [4, 49], algebraic geometry [27, 31, 50], differential
geometry [26], and analysis [12, 1963-64] has been enormous. In its own
right, it is a major tool for the investigation of topological spaces, especially
manifolds. Its key idea is to attach algebraic structures to topological spaces
and their maps in such a way that the algebra is both'invariant under a vanety
of deformations of spaces and maps, and computable.

This book is intended as a first course, sufficiently comprehensive to
enable the student either to use the subject in other fields of endeavor and/or
to pursue its development and applications in more advanced texts and the
literature.

Our presentation is a revision of the first author’s Lectures on Algebraic
Topology. The intent in rev'sing was to make those additions of theory,
examples, and exercises which updated, enhanced, and simplified the
original exposition. The point of view and organizational principles of the
earlier book have been maintained. Virtually all of the original book has been
reproduced.

In the additional material, special attention has been given to calculations,
with more geometry to balance all the algebra.

There are essentiaily four parts to this work: Sections 1-7 form Part 1,
elementary homotopy theory. Homotopy of paths and maps is defined, and
the fundamental group is constructed. The classification of covering spaces
by means of subgroups of the fundamental group is given, and, finally, the
higher homotopy groups are defined inductively using loop spaces, following
Hurewicz.

Sections 8-21, Part II, treat singular homology theory. This Part has been
influenced by the lucid notes of E. Artin [3] and the work of Eilenberg-
Steenrod [23]. The advantages of singular over simplicial homology theory
are that, first, it applies to arbitrary topological spaces; second, it is obviously
topologically invariant; third, once the excision theorem is proved, there is
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never again any need to subdivide, and, finally. it is easier to calculate once
the hasic formulas (19.16-19.18) have been proved. Combinaiorial
techniques are still very important in algebraic topology [36. 62. 70|
However, it is now recognized that algebraic topology encompasses at least
three different categories—topological. differential, and piecewise linear. In
this book we treat primarily the first (references for the second are [15. 17,
41-44, 51, 55. 68, 71|). The classical applications of homology theory to
spheres are given in Sections 15. 16, and 18.

Sections 22-28 form Part 111, the orientability and duality properties of
manifolds. This part has been greatly influenced by notes of Dold, Puppe.
and Milnor. No assumption of triangulability is needed in this treatment. The
correct cohomology theory for the duality is that of Alexander-Cech;
however. for brevity's sake, we only describe the Alexander-Cech coho-
mology-module of a subspace A as the inductive limit over the neighborhoods
of A of the singular cohomology modules. We show that this coincides with
the singular cohomology module when A is a compact ANR.

Finally in Part IV we develop the basic features of the theory of products in
cohomology. The applications include the Lefschetz fixed point theorem for
compact oriented manifolds and an introduction to intersection theory in
closed manifolds.

Each part is divided into several sections. These are the organizational
units of the-text. There is considerable flexibility (especially in the latter
parts) in the order in which they may be studied. In Part 1I, many sections
conclude with material which may be skimmed or skipped at first reading.

Most sections end with sets of exercises. No theoretical development
depends on an exercise nor is further theoretical material given as exercises.
Most exercises concern calculation and, as the subject develops, geometric
applications are made. There are many cross-references among exercises.
Refinements of calculations available with developments of the theory are
offered. Similarly, improvements in geometric results are made in several
sections. This process imitates the way the subject actually developed, and
may help motivate the successive layers of abstraction through which the
subject passes. Some exercises are accompanied with suggestions for their
solution. These suggestions should not be taken too seriously. Most problems
can be solved in different ways, and one’s favorite solution may not receive
widespread approval. But it is discouraging to be totally “stuck” so sugges-
tions are offered to alleviate that condition.

Prerequisites for this book, besides the usual “*mathematical maturity,” are
very few. In algebra, familiarity with groups, rings, modules, and their
homomorphisms is required. From Section 20 on, some basic results for
modules over principal ideal domains will be used. Only in Sections 29 and
30 is knowledge of the basic properties of the tensor product of two modules
needed. The language of categories and functors is used throughout the book,



Preface xi

although no theorems about categories are required. For all of this material,
see Lang [35].

In point-set topology, the reader is presumed to be familiar with the basic
facts about continuity, compactness, connectedness and pathwise-
connectedness, product spaces, and quotient spaces. Only in the appendix to
Section 26* do we require a nontrivial result, Tietze’s extension theorem.
Section 7 uses some elementary results about the compact-open topology on
function spaces. For this material, see Dugundji [20] or Kelley [34].

I recommend the survey articles [44a, 62, and 75, pp. 227-31 and its,
bibliography] to the reader seeking further information on the extraordinary
achievements in algebraic topology in recent years.

I thank M. Artin, H. Edwards, S. Lang, B. Mazur, V. Poenaru, H.
Rosenberg, E. Spanier, and A. Vasquez; also my students Berkovits, Perry,
and Webber, for helpful comments.

We are grateful to a number of people for helpful remarks concerning the
revision. The comments of D. Anderson, E. Bishop, G. Carlsson, M.
Friedman, T. Frankel, J. Lin, and K. Millett were helpful in deciding what to
include and what to leave out. As the work developed, valuable remarks were
made by M. Cohen, A. Liulevicius, R. Livesay, S. Lubkin, H. Miller, R.
Mandelbaum, N. Stein, and A. Zabrodsky.

The typing of the manuscript was expertly done by S. Agostinelli, R.
Colon, and M. Lind. Additional figures were drawn by D. McCumber.

Special thanks are extended to Doris, Jennifer, and Allison for not
overreacting to neglect endured during preparation and assembly of this
material.

Lastly, we thank Errett Bishop for suggesting that we collaborate on this
book.

MARVIN J. GREENBERG
JouN R. HARPER

*(26.17)
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Introduction to Part |

The wellspring of ideas leading to algebraic topology was the perception,
developed largely in the latter half of the nineteenth century, that many
properties of functions were invariant under ‘‘deformations.” For example,
Cauchy’s theorem and the calculus of residues in complex analysis assert
invariance of complex integrals with respect to continuous deformations of
curves. Perhaps the true starting point was Riemann’s theory of abelian
integrals. It was here that the significance of the connectivity of surfaces was
recognized. The interested reader is strongly encouraged to examine Felix
Klein’s exposition of Riemann’s theory [80], during the study of algebraic
topology.

It was Poincaré who first systematically attacked the problem of attaching
numerical topological invariants to spaces. In his investigations, he perceived
the difference between curves deformable to one another and curves
bounding alarger space. The former idea led to the introduction of homotopy
and the fundamental group, while the latter led to homology.

The development of these ideas into a mathematical theory is elaborate.
However, the idea guiding the development is easily described. Certain
functors are constructed. Thus to each topological space X is assigned a
group F(X), and to each map f: X—Y (a ‘'map” of topological spaces wili
always mean a “continuous map” unless otherwise stated) is assigned a
homomorphism F (f) : F(X) — F (Y) such that

(1) If Y =X and f= identity, then F (f) = identity,
(2) Ifg:Y — Z, then F(gf) = F(@)F(f).

Illustration: Suppose we have a diagram of topological spaces and maps

MarvinJ. Greenberg and John R. Harper, Algebraic Topology: A First Course ISBN0-8053-3558-7(H)

ISBN 0-8053-3557-9(Pbk)
Copyright © 1981 by Benjamin/Cummings Publishing Company, Inc., Advanced Book Program. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of
the publisher.



4 Elementary Homotopy Theory

/E
p
X

fr
b
/

f

Y-

and the problem is to find /' such that pf’ = f. Applying the functor F we see
that a necessary condition for a solution to exist is that F(f') send F(Y) into
the subgroup F(p)(F(E)) of F(X). In certain cases later we will see this is
also sufficient (6.1).

Tllustration: Suppose f : X — Y is a homeomorphism. Then by func-
toriality F(f ") is inverse to F(f), so that F(f) is an isomorphism. Thus a
necessary condition (but usually not sufficient) that X and ¥ be homeomor-
phic is that F(X) and F(Y) be isomorphic groups. This is usually the easiest
way to prove that two given spaces with similar topological properties are not
homeomorphic.

Illustration: Suppose i : A — X is the inclusion map of a subspace 4 into X
and our problem is to find a map r: X — A such that r/ is the identity map of
A (such a map r is called a retraction of X onto A). By functoriality, F (r)F (i)
equals the identity transformation of F(A), so that F(i) sends F(A4)
isomorphically onto a subgroup of F(X). If we happen to know, e.g., that
F(X) is trivial while F(A) is not, it then follows that no retraction can exist.
This is the way the Brouwer Fixed Point Theorem is proved (4.11 and 15.7).

The reader may construct some more illustrations to convince himself of
the fruitfulness of this point of view.



1. Arrangement of Part |

In Part I, we treat the fundamental group and the closely related notion of
covering space. The geometric idea for the construction of the fundamental
group functor is homotopy of paths. Roughly speaking, a homotopy of a path
is a deformation leaving the end points fixed. A composition of paths may be
defined when the end point of one agrees with the initial point of the other.
Familiar algebraic properties, like associativity, do not hold, but do hold up
to homotopy. The result is a group structure on equivalences classes, called
the fundamental group. This group is not just a topological invariant, but
invariant under a larger class of maps, called hiomotopy equivalences. These
topics are treated in Sections 2 and 3.

In order to exploit the fundamental group, we must be able to calculate it.
There are two principal routes to calculation: the Seifert-Van Kampen
theorem and the use of covering spaces. The versions of the former used in
this text are stated in (4.12). There are several excellent accounts available
in other texts, so we do not reproduce the details. OQur treatment of the
fundamental group of the circle is the prototype for the theory of covering
spaces. The lifting theorem for covering spaces (6.1), besides being useful, is
an outstanding example of the blend of algebra and geometry that gives this
subject its special flavor. Part I concludes with a brief discussion of higher
homotopy groups, introduced by means of loop spaces.
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2. Homotopy of Paths

Consider, in the plane, the problem of integrating a function fof a complex
variable around a closed curve C, e.g., the unit circle. We have, for example,

fzdz=l
c

dz
—#0

c Z

What is the difference? We take the point of view that C can be ‘“‘shrunk to a
point” within the domain of analyticity of z (i.e., the whole plane), hence
integrating around C is equivalent to integrating at a point, which gives 0. On
the contrary C cannot be ““shrunk to a point” within the domain of 1/z.

More precisely, let o, T be paths in a space X (i.e., maps of the unit interval
I into X)) with the same end points (i.e., 0(0) = 7(0) = x,, o(1) = (1) = x,).
We say o and t are homotopic with end points held fixed written

o=rtrel (0,1)
if there is amap F : I X I — X such that

(1) F(s,0)=o(s) all s
(2) F(s,1)=1s) all s

(3) F(0,0)=x all ¢
(4) F(l,0)=x all ¢
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Homotopy of Paths 7

F is called a homotopy from o to t. For eacht,s — £ (s, ) is a path £, from
Xo to x,, and F, = 0, F, = . We write

F:o=1 rel (0, 1)

Pictorially:

ag

In particular if o is a loop at x; (i.e., x; = x;) and t is the constant loop
7(s) = x; for all s, and if 0=t rel (0, 1), we say that “‘o can be shrunk to a
point,” or is homotopically trivial.

Then the correct statement of Cauchy’s Theorem is that f f(z)dz =0
4

for all loops C in the domain X of analyticity of f which are homotopically
trivial (more generally, homologically trivial).
The following properties of relation == are easily proved:
(1) o=¢ rel (0, 1)
(2) o=r1 rel (0,1)= t=o0rel(0,1)
(3) o==< rel(0, 1) andr = prel(0,1)= o= prel(0, 1)

R

Thus we can consider the homotopy classes | g] of paths ¢ from x; to x; under
the equivalence relation =,

If o is a path from x;, to x, and t is now taken to be a path from x, to x,, we
define a path ot from x, to x, by first travelling along o, then along t; more
precisely we set

(4) o=c'rel(0,1)andr=7"rel(0,1)= ot =o't rel (0, 1).

Proof: If F, 0~ 0" rel (0, 1), G, : T = 7' rel (0, 1), then



8 Elementary Homotopy Theory

F.G, .ot =~ 0't ' rel (0, 1). |

Thus we can multiply the class of o on the right by the class of T without
ambiguity, always supposing the end point of ¢ equals the initial point of .

(2.1} Theorem. Let m (X, x;) be the set of homotopy classes of loops in X
at x,. If multiplication in m,(X, x,) is defined as above, m (X, x,) becomes a
group, in which the neutral element is the class of the constant loop at x,
and the inverse of a class [0} is the class of the loop o~ defined by

o '(t)=o(l — 1) 0<t<1
{(i.e., travel backwards along o).

Proof We will prove that oo™! >~ x,, where now x, denotes also the
constant loop at the point x,. The homotopy is given by the following

diagram:

o o
Xo
Thus, we define F (s, ¢) by
o(2s) 0<2s<t
F (s, t)= o(t) 1<2s<2-—t

o l(2s—1) 2—t<2s<2

Clearly these functions are continuous on each triangle and they agree on the
intersections, hence by an elementary argument F is continuous on the whole
square.

The proof that multiplication is associative (up to homotopy) can be done
similarly, as can the proof that the class of x; is the neutral element.



Homotopy of Paths 9

-
4s) 0<s<i(+1)
T\t +1 =& =
DefineF(s,t)=J (4s —t— 1) W+ D<s<i(t+2)

4s —t — 2 ;
Lu) T;— (t+2)<s=<1

to establish (o7)w = o(tw) rel (0, 1).

( 2s t+1
o\ 0<s< —
t+1 2
Define F (s, 1) = <
t+1
Xo ——<s<1
. 2

to establish that the constant path at x, is the neutral element of the
fundamental group. [ ]

Is there a relation between m (X, Xp) and (X, x, )? There certainly is not if
Xp and x, lie in different path-connected components of X. However, we have
the following result.

(2.2) Proposition. Let a be a path from x, to x,. The mapping |o] —

[a 'oa] is an isomorphism a, of the group m\(X, x,) onto (X, xy).
Proof: 1t is clearly a homomorphism, and (a")‘ is its inverse (where a”!

is the path defined as in 2.1). |

(2.3) Corollary. If X is pathwise connected, the group m (X, xy) is
independent of the point xy, up to isomorphism.

In that case we often write simply m(X) for m (X, x;) and call it the
JSundamental group of X.

We would like m;, to be a functor from spaces to groups, but since m; (X, xy)
does depend on the base point x; in the general case, we must put the base
points into our category if we are to obtain a functor. So define the category
of pointed topological spaces to have as objects pairs (X, xg), and as
morphisms the maps f: X — Y such that /(x,) = y,. For any such fwe obtain
an induced homomorphism



