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11

Reasoning with
Space and Time

The chapter presents the models for reasoning with space and time. It begins
with spatial axioms and illustrates their applications in automated reasoning
with first order logic. Much emphasis has been given on the formalization of
the spatial relationships among the segmented objects in a scene. Fuzzy
spatial relationship among 2-D objects has been briefly outlined. The
application of spatial reasoning in navigational planning of mobile robots has
also been highlighted. The second half of the chapter deals with temporal
reasoning. The principles of temporal reasoning have been introduced from
the first principles by situation calculus and first order temporal logic. The
need for reasoning with both space and time concurrently in dynamic scene
interpretation is also outlined at the end of the chapter.

11.1 Introduction

The reasoning problems we came across till now did not involve space and
time. However, there exist many real world problems, where the importance
of space and time cannot be ignored. For instance, consider the problem of
navigational planning of a mobile robot in a given workspace. The robot has
to plan its trajectory from a pre-defined starting point to a given goal point. If
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the robot knows its world map, it can easily plan its path so that it does not
touch the obstacles in its world map. Now, assume that the robot has no prior
knowledge about its world. In that case, it has to solely rely on the data it
receives by its sonar and laser sensors or the images it grabs by a camera and
processes these on-line. Representation of the space by some formalism and
developing an efficient search algorithm for matching of the spatial data, thus,
are prime considerations. Now, let us assume that the obstacles in the robot’s
world are dynamic. Under this circumstance, we require information about
both space and time. For example, we must know the velocity and
displacements of the obstacles at the last instance to determine the current
speed and direction of the robot. Thus there is a need for both spatial and
temporal representation of information. This is a relatively growing topic in
AT and we have to wait a few more years to get a composite representation of
both space and time.

Spatial reasoning problems can be handled by many of the known Al
techniques. For instance, if we can represent the navigational planning
problem of a robot by a set of spatial constraints, we can solve it by a logic
program or the constraint satisfaction techniques presented in chapter 19.
Alternatively, if we can represent the spatial reasoning problem by predicate
logic, we may employ the resolution theorem to solve it. But how can we
represent a spatial reasoning problem? One way of doing this is to define a set
of spatial axioms by predicates and then describe a spatial reasoning problem
as clauses of the spatial axioms. In this book we used this approach for
reasoning with spatial constraints.

The FOL based representation of a spatial reasoning problem
sometimes is ambiguous and, as a consequence, the ambiguity propagates
through the reasoning process as well. For example, suppose an object X is
not very close to object Y in a scene. Can we represent this in FOL? If we try
to do so then for each specific distance between two objects, we require one
predicate. But how simple is the representation in fuzzy logic! We need to
define a membership function of ‘Not-very-close’ versus distance, and can
easily obtain the membership value of Not-very-close (X, Y) with known
distance between X and Y. The membership values may later be used in

fuzzy reasoning. A section on fuzzy reasoning is thus introduced for spatial
reasoning problems.

Reasoning with time is equally useful like reasoning in space. How can
one represent that an occurrence of an event A at time t, and another event B
at time t+1, causes the event C to occur at time t+2? We shall extend the First
order logic to two alternative forms to reason with this kind of problem. First
one is called the situation calculus, after John McCarthy, the father of AL
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The other one is an extension by new temporal operators; we call it
propositional temporal logic.

Section 11.2 describes the principles of spatial reasoning by using a set
of spatial axioms. The spatial relationship among components of an object is
covered in section 11.3. Fuzzy spatial representation of objects is presented in
section 11.4. Temporal reasoning by situation calculus and by propositional
temporal logic is covered in section 11.5 and 11.6 respectively. The
formalisms of interval temporal logic is presented in section 11.7. The
significance of the spatial and temporal reasoning together in a system is
illustrated in section 11.8.

11.2 Spatial Reasoning

Spatial reasoning deals with the problems of reasoning with space. Currently,
to the best of the author’s knowledge, there exist no well-organized
formalisms for such reasoning. So we consider a few elementary axioms
based on which such reasoning can be carried out. These axioms for spatial
reasoning we present here, however, are not complete and may be extended
for specific applications.

Axioms of Spatial Reasoning

Axiom 1: Consider the problems of two non-elastic objects O; , O; . Let the
objects be infinitesimally small having 2D co-ordinates (x;, y;) and (x;j, ;)
respectively. From commonsense reasoning, we can easily state that

VO, 0, xi#x; and yzy; .

Formally,
VO, , O; Different (O, , O;) 2 —( Eq(x;, x;) A Eq (¥i. ¥j) )-

An extension of the above principle is that no two non-elastic objects,
whatever may be their size, cannot occupy a common space. If S; and S; are
the spaces occupied by O; and O; respectively,

thenSimSJ:(p,
= = (Sin §j)=true

= —|Si ) —|Sj is true.
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Formally,
VOl N Oj S, (Ol) A SJ(OJ) A —xEq(O,,Oj) 9 —|S,(O,) =V SJ(Oj) .

In the above representation, the AND (A) and OR (v) operators stand for
intersection and union of surfaces or their negations (complements).

Further, VO; , O; means O;, O; €S, where S is the entire space that contains
O, and O;, vide fig. 11.1.

S(0)

Fig. 11.1: Space S containing object O; and O; having 2-D
surfaces S(O;) and S(O)).

In our formulation, we considered two dimensional spaces S , S(O;)
and S(O;). However, we can easily extend the principle to three dimensions.

Axiom 2: When an object O; enters the space S, S N S(O;) # ¢ , which
implies
S A S(Oy) is true .
Formally ,
YO; S(O;) A Enter(0;, S)=>S A S(O)).
Similarly, when an object O; leaves a space S, S N S(O;) = ¢,
Or, =Sv —15(0,) is true.
Formally, V O; S(O;) A Leaves (O;,S) > =S v —=S(0)).

Axiom 3: When the intersection of the surface boundary of two objects is a
non-null set, it means either one is partially or fully embedded within the

other, or they touch each other. Further, when a two dimensional surface
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touches another, the common points must form a 2-D line or a point.
Similarly, when a 3-dimensional surface touches another, the common points
must be a 3-D /2-D surface or a 3-D / 2-D line or a point. It is thus evident
that two objects touch each other, when their intersection of surface forms a
surface of at most their dimension. Formally,

VO, V Oj Less-than-or-Equal-to (dim( S(O;) A S(0Oy)), dim (S(Oy)) A
Less-than-or-Equal-to (dim(S(O;) A S(0y)), dim (S(O;)) — Touch (O;, O;)

Where ‘dim’ is a function that returns the dimension of the surface of its
argument and dim (S(O;) A S(Oj)) represents the dimension of the two
intersecting surfaces: O; and O;. The A-operator between the predicates Less-
than-or-Equal-to denotes logical AND operation.

Axiom 4: Now, for two scenes if dj; and d; denote the shortest distance
between the objects O; and O; in scene 1 and 2 respectively, then if dij;<djj,
we can say the objects O; and O; are closer in scene 2 compared to that in
scene 1. Formally,

V O;, O; Exists (O;, O;, in-scenel) A Shortest -distance ( d;;, , Oi, Oj , in-
scenel ) A Exists ( O, O;, in -scene2) A Shortest -distance ( d;2, O;, O;, in-
scene2) A smaller (d;, , dij; ) = Closer ( O;, O;, in-scene2 , wrt-scene =1);

where the predicate Exists (O;,0; ,in-scene k ) means O; and O; exists in scene
k; Shortest distance (dix , O; , O;, in-scene k , wrt-scene =1 ) denotes that dy
is the shortest distance between O; , and O; in scene k with respect to scene 1.

The axioms of spatial reasoning presented above can be employed in
many applications. One typical application is the path planning of a mobile
robot. Consider, for example, the space S, where a triangular shaped mobile
robot has to move from a given starting to goal point, without touching the
obstacle O1, 02, 03,04, ., O7.

We can construct a constraint logic program (CLP) to solve this
problem. We assume that the robot R can sense the obstacles from a distance
by ultrasonic sensors, located around the boundary of it. The CLP of this
problem is presented below.

Move(R, Starting -position , goal -position ) : -
Move S(R) in S,
not Touch(S(R ), S (O))) V O..

Move(R, goal-position, goal-position). -
b
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The above program allows the robot R to wander around its
environment, until it reaches the goal-position. The program ensures that
during the robot’s journey it does not hit an obstacle. Now, suppose, we want
to include that the robot should move through a shortest path. To realize this
in the CLP we define the following nomenclature.

1. Next-position( R): It is a function that gives the next-position of a robot
R.

2. S (next-position (R)): It is a function, representing the space to be
occupied by the robot at the next-position of R.

Starting position

A OZB

04

o (D
o7<>
05 06

: Goal position A

Space S
Fig 11.2: Path planning of a robot R in space S.

It is to be noted that the robot should select arbitrary next position from
its current position and then would test whether the next-position touches any
object. If yes, it drops that next-position and selects an alternative one until a
next-position is found, where the robot does not touch any obstacle. If more
than one next-position is found, it would select that position, such that the
sum of the distances between the current and the next-position, and between
the next position and the goal, is minimum.

The CLP for the above problem will be presented next. A pseudo

Pascal algorithm is presented below for simplicity.
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Procedure Move-optimal (R , Starting-position, goal-position)
Begin
Current-position (R ) := Starting-position (R );
While goal not reached do
Begin
Repeat
Find-next-position ( R) ;
j=1;
If S (next-position( R)) does not touch S(O;) Vi ;
Then do
Begin
Save next-position (R ) in A[j] ;
FHL
End;
Until all possible next positions are explored;
Vj Find the next-position that has the minimum distance from the
current position of R and the goal; Call it A[k].
current-position(R) := A [k] ;
End while
End

We now present the CLP that takes care of the two optimizing constraints: i)
movement of the robot without touching the obstacles, and ii) traversal of an
optimal ( near- optimal) path.

Move-optimal (R, Starting-position, goal-position):-
Move S(R) in S,
Not Touch( S(R), S (0))) Vi,
Distance ( next-position (R ), current-position ( R)) +
Distance (next-position (R ), goal-position)

is minimum V feasible next-position(R ),

current-position (R ) « next-position (R ),
Move-optimal (R, current-position, goal-position).

Move-optimal (R, goal-position, goal-position).

It is to be noted that here we need not explicitly define Touch (S (R ), S (0)))

as it is presumed to be available in the system as a standard predicate,
following axiom 3. Further, we can re-define the distance constraint in the last
program by axiom 4 as follows:

Closer (next-position (R ), current-position (R ), in-scene k, w.r.t scene # k),
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Closer (next-position (R ), goal-position, in-scene k, w.r.t scene # k).

The significance of the spatial axioms now is clear. It helps in declaring the
problem specifications in simpler terms, rather than formulating the problem
from the grass-root level.

11.3 Spatial Relationships among
Components of an Object

Many physical and geometric objects can be recognized from the spatial
relationship among its components. For instance, let us define a chair as an
object consisting of two planes abcf and cdef having an angle 8 between them,
where 6 <90%+o. and where 0< o <45°. Further, one of its plane is
perpendicular to at least 3 legs ( the 4™ one being hidden in the image). So,
we define:

Object(chair):-
Angle-between (planel, plane2, 90+a) ,
Greater-than(o, 0),
Less-than (a, 45) ,
Parallel (linel, line2, line3),
perpendicular (linel, planel),!

For actual realization of the small program presented above, one has to
define equation of lines and planes; then one has to check the criteria listed
in the logic program. It may be noted here that finding equation of a line in an
image is not simple. One approach to handle this problem is to employ a
stochastic filter, such as Kalman filtering [1] . We shall discuss this issue once
again in chapter 17 on visual perception. However, for the convenience of
interested readers, we say a few words on the practical issues.

A skeleton of a chair, which can be obtained after many elementary
steps of image processings is presented in fig. 11.3. Now, the equation of the
line segments is evaluated approximately from the set of 2-dimensional
image points lying on the lines. This is done by employing a Kalman filter. It
may be noted that the more the number of points presented to the filter, the
better would be accuracy of the equation of the 2-dimensional lines. These 2-
D lines are then transformed to 3-D lines by another stage of Kalman filtering.
Now, given the equation of the 3-D lines, one can easily evaluate the equation
of the planes framed by the lines by using analytical geometry. Lastly, the
constraints like the angles between the planes, etc. are checked by a logic
program, as described above. The graduate students of the ETCE department
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at Jadavpur University verified this method of recognizing a 3-D planer object
from its skeletal model.

h

Fig. 11.3: Spatial relations among components of a skeleton chair.

11.4 Fuzzy Spatial Relationships among Objects

Consider the objects A and B in fig. 11.4 (a) and (b). We would say that B is
left to A. It , however, is to be noted that B and A have some overlap in (a)

but there is no overlap in (b).

(a) (b)

Fig. 11.4: Object B is left to object A: (a) with overlap, (b) without overlapss
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(@) (®)

Fig. 11.5: Object B is down to object A: (a) exactly down, (b) down but right
shifted.

Now consider fig. 11.5 where in both (a) & (b) B is down to A; but in
(a) B is exactly down to A, whereas in (b) it is right shifted a little. To define
these formally, we are required to represent the spatial relationships between
the objects A and B by fuzzy logic.

~ Let us first define spatial relations between points A and B. We
consider four types of relations: right, left, above and below. Here following
Miyajima and Ralescu [4], we define the membership function as a square of

sine or cosine angles 6 (vide fig. 11.6), where 6 denotes the angle between
the positive X axis passing through point A and the line joining A and B. The
membership functions for the primitive spatial relations are now given as
follows:

M right (9)= COSZ(G) ,when-[T1/2<0<TJI/2,
= 0, otherwise.

W er(8)= C052(9) , when -[T<0<-I1/2,
and [I/2<6<II
= 0, otherwise.

Mbelow (0)= Sinze ,when 0<0<TT,
= 0, otherwise.
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K above(0) =sin’0 , when -[[<6<0,
= 0, otherwise.

A common question that now arises is why we select such functions. As
an example, we consider the ‘below membership function’. Let us compute
Upelow(0) at a regular interval of 6 =[]/4 , in the graph 0 <® <[ . Fig. 11.5
presents the membership values for different 6. It is clear from the figure that
when B is exactly below A (fig. 11.6(c)) Upetow(® =I1/2)=1 , which is logically
appealing. Again when 6=[[/4 or 6=3[1/4 (fig. 11.6 (b) & (d)), the
membership value of pyeow (8)=1/2 ; that too is logically meaningful. When
0 =0 (fig. 11.6(a)) or TI, Upeiow(®) =0 , signifying that B is not below A. The
explanation of other membership functions like Lrigh(6), Miea(8) , Mabove(P) can
be given analogously.

b= 00’ ubelow(e) =0

(a)

6= n/4’ ubelow ©) =1/2

(b)
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g X
0
2D &
Y
e=ﬂ/2, ubelow ®) =1
(c)
A
0 X
Y

B
6=3"/4, Wbelow (8) =172

G

Fig. 11.6: Illustrating significance of the [Lpelow (0) function.
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Here in (a) and (b) computation of angles (w.r.t the horizontal axis) of the lines joining the
vertices of the rectangle to the vertices p and q of the triangle have been illustrated. Similar
computations have to be performed for the line joining the vertices of the rectangle to the vertex r
of the triangle. All 8 angles have not been shown in the figure for clarity.

Fig. 11.7: Demonstrating f (6) / (m .n) computation.
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So far we discussed spatial relationship between two points by fuzzy
measure. Now, we shall discuss the spatial relationships between two objects.
Let A and B be two objects and {a;, | <i<n }, { b; , 1< j<m } be the set of
points on the boundary A and B respectively. We first compute the angle 6;;
between each two points a; and b; . Since there are n a; points and m b; points,
the total occurrence of 6;; will be (m x n). Now, for each type spatial relation
like b; below ay;, we estimate Lpiow(6;;). Since 6;; has a large range of value [0,
IT ], we may find equal value of peow(6;) for different values of 0;. A
frequency count of e,w(8i) versus 8; is thus feasible. We give a generic
name f (6) to the frequency count. Since f (0) can have the theoretical largest
value (n. m), we divide f (8) by (m. n) to normalize it. We call that
normalized frequency f(8) = f (6) /(m .n). We now plot f(0) versus 6 and
find where it has the largest value. Now to find the spatial relationship
between A and B, put the values of 0 in i,¢0w(0) Where f(0) is the highest.

In fig. 11.7 we illustrate the method of measurement of the possible
0;s. Since abcd is a rectangle and pqr is a triangle, considering only the
vertices, m .n =3. 4 =12, We thus have 12 possible values of 6;;. So f(8) =
f(8)/12. It is appearing clear that f (6) will have the largest value at around

45 degrees (fig. 11.8); consequently ubdow(6=45°) gives the membership of
pqr being below abcd.

1.00 —

F(0)

| | o

0 45° 90" 135 180

6 —»

Fig. 11.8: Theoretical f (0) versus 6 for example cited in fig. 11.7.
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11.5 Temporal Reasoning by
Situation Calculus

‘Temporal reasoning', as evident from its name, stands for reasoning with
time. The problems THE real world contain many activities that occur at a
definite sequence of time. Further there are situations, when depending upon
the result of occurrence of one element at a time t, a second event occurs at
some time greater than t. One simple way to model this is to employ ‘situation
calculus’ devised by John McCarthy [3].

The reasoning methodology of situation calculus is similar with first
order predicate logic. To understand the power of reasoning of situation
calculus, we are required to learn the following terminologies.

Definition 11.1: An event stands for an activity that occurs at some time.
Definition 11.2: A fluent is a fact that is valid at some given time frame but
becomes invalid at other time frames.

Definition 11.3: A situation is an interval of time during which there is no

change in events.
The following example illustrates the above definitions.

Example 11.1: Consider the following facts:
1.It was raining one hour ago.

2.People were moving with umbrellas in the street.
3.The rain has now ceased.

4.1t is now noon.

5.The sky is now clear.

6.The sun is now shining brightly.

7.Nobody now keeps an umbrella open.

Statement 1, 2, 3, 6 and 7 in this example stand for events, while all
statements 1-7 are fluent. Further, it is to be noted that we have two situations
here; one when it was raining and the other when the rain ceased.
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11.5.1 Knowledge Representation and
Reasoning in Situation Calculus

To represent the statements 1-7 in situation calculus, we use a new predicate
‘Holds’. The predicate Holds(s, f) denotes that the fluent f is true in situation
s. Thus statement (1-7) can respectively be represented as:

Holds (0, it-was-raining) (1)

Holds (0, people-moving-with-umbrellas) (2)

Holds (now, rain-ceased) (3)

Holds (now, it-is-noon) (4)

Holds (now, the-sky-is-clear) (5)

Holds (now, the-sun-shining-brightly) (6)

Holds (Results (now, the-sun-shining-brightly),

not (anybody-keeps-umbrella-open)) (7)

The representation of the statements (1-6) in situation calculus directly
follows from the definition of predicate ‘Holds’. The representation of
statement (7), however, requires some clarification. It means that the result
(effect) of the sun shining brightly is the non-utilization of the umbrella.
Further, ‘not’ here is not a predicate but is treated as a term (function). In
other words, we cannot write not(anybody-keeps-umbrella-open) as
—(anybody-keeps-umbrella-open).

For reasoning with the above facts, we add the following rules:

If it rains, people move with umbrellas. (8)

If the rains ceased and it is now noon then the result of sun shining brightly
activates nobody to keep umbrella open. (9)

The above two rules in situation calculus are given by

Vs Holds(s, it-was-raining)-> Holds(s, people-moving-with-umbrellas) (8)

Vs Holds(s, rain-ceased) A Holds(s, it-is-noon) — Holds (result (s, sun-

shining-brightly), not (anybody-keeps-umbrella-open)) C)

Reasoning: Let us now try to prove statement (7) from the rest of the facts
and knowledge in the statements (1-9). We here call the facts axioms. So, we
have:
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