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PREFACE

These proceedings consist of papers whose authors addressed a small
but enthusiastic group of numerical analysts on the Multigrid Method,
during a Summer School/Workshop held at the Burwalls Conference Centre,
University of Bristol, England, in September 1983. Most of the papers
were substantially revised after the meeting, and bring together the
authors' views and research up to the effective closing date of the
proceedings (July 1984).

During the first part of the meeting, participants had the privilege
of hearing the guest speakers, all of whom are leading authorities in
this relatively new and exciting branch of numerical analysis: Achi
Brandt, Wolfgang Hackbusch, Pieter Hemker, Ulrich Trottenberg and
Pieter Wesseling. Each presented two papers on the theory and practice
of the Multigrid Method. The second part of the meeting consisted of
the presentation of contributed papers. Throughout the meeting,
participants responded warmly to the excellent quality of the papers,
and to the open and friendly discussions led by the guest speakers.

Multigrid Methods came into prominence in the late 1970's. The
guest speakers have made major contributions to its development and
its acceptance as a significant computational tool. Even though
computers have shown orders of magnitude performance increases during
the last decade, the demand for efficient, robust methods for solving
field equations remains open. It is in this direction that the Multi-
grid Method has made notable advances, and has made accessible new
areas of computation, e.g. three-dimensional simulation. In many cases,
the Multigrid Method allows a realisation of optimal algorithms, whose
computational work growslinearly with the number of unknowns in a system
of equations. The Multigrid Method may itself be regarded as a model
numerical process, capable of influencing future research into optimal
algorithms.

These proceedings fall into two sections.

Section 1. This starts with a witty introduction by A. Brandt, from
which we may gain insight into the deep-felt philosophical convictions
held by a principal founder of the Multigrid Method. It is followed
by the paper of W. Hackbusch, which gives a substantial review of the
Multigrid Method for integral equations, together with a considerable
innovative content. A very wide range of problems is shown to be
amenable to the integral equation approach. P. Hemker's contribution
gives a state-of-the-art guide to the design and implementation of
programs for the Multigrid Method, applied to the solution of difference
equations derived from general elliptic equations of the convection-
diffusion type. Scalar and vector codes are considered. The paper
of P. Sonneveld, P. Wesseling and P.M. de Zeeuw gives a most lucid
treatment of conjugate gradient and Multigrid as methods for the
acceleration of iterative convergence. The efficiency and robustness
of the methods are compared for a variety of difficult test problems
derived from the convection-diffusion equation.:
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Section 2. This section contains the contributed papers, and
represents a spectrum of research ranging from new theory (J.F. Maitre
and F. Musy; S. McCormick) to applications of Multigrid in engineering
design (K.E. Barrett et al.) and in particular, to three-dimensional
simulation (T. Scott). Hybrid techniques, in which Multigrid plays a
key role, are described in papers on Spectral Methods (T.N. Phillips,
T.A. Zang and M.Y. Hussaini) and the Hierarchical Finite Element Method
(.A.W. Craig and 0.C. Zienkiewicz).

Both finite difference (B. Favini and G. Guj) and finite element
approaches are exemplified in this section. An outstanding contribution
is made by J. Ruge and K. Stiben to the understanding of the Algebraic
Multigrid Method. Here the Multigrid approach is extended to apply to
a fairly wide class of sparse matrix systems, irrespective of their
origin from a finite difference or finite element discretisation, or
indeed from any geometric grid structure at all. While there are
computational overheads compared to the most efficient geometric
maltigrid solvers when applicable, the authors exhibit remarkably
successful results on a variety of problems, using a truly "pitch
black box" Algebraic Multigrid routine.

The Summer School/Workshop and subsequent communication with the
authors has given the editors a great deal of pleasure. We warmly
express our gratitude to the authors for their cooperation and friendship
while producing these proceedings, and for the opportunity to present
for publication this collection of stimulating papers.

we would like to thank Roger Moses and the staff of the Burwalls
Conference Centre for creating an atmosphere so conductive to the
meeting and discussions that took place. We would also like to thank
Catherine Richards and her staff at the Institute of Mathematics and
its Applications for the careful typing and efficient yet cheerful way
in which they coordinated the production of these proceedings. We are
grateful to the staff of the OUP for publishing this volume, and in
particular to Anthony Watkinson, for the help, encouragement and
patience he has shown throughout its preparation.

Derek Paddon

Horst Holstein



ACKNOWLEDGEMENTS

The Institute thanks the authors of the papers, the editors,
Dr. D. Paddon, AFIMA (University of Bristol) and Dr. H. Holstein, AFIMA
(University College, Wales) and also Mrs. Janet Parsons, Miss Denise
Wright, Miss Pamela Irving and Miss Karen Jenkins for typing the papers.



LIST OF CONTRIBUTORS

K.E. Barrett, Department of Mathematics, Coventry (Lanchester)
Polytechnic, Coventry CVl 5FB, UK

A. Brandt, Department of Applied Mathematics, The Weizmann Institute
of Science, Rehovot, Israel

D.M. Butterfield, Department of Mathematics, Coventry (Lanchester)
Polytechnic, Coventry Cvl 5FB, UK

A.W. Craig, Civil Engineering Department, University College of
Swansea, Singleton Park, Swansea SA2 8PP, UK

S.E. Ellis, Department of Mathematics, Coventry (Lanchester)
Polytechnic, Coventry CV1 5FB, UK

< B. Favini, Dipartmento di Meccanica e Aeronautica, Universitd di
Roma, 'La Sapienza', Italy

G. Guj, Dipartmento di Meccanica e Aeronautica, Universita di Roma,
'La Sapienza', Italy

W. Hackbusch, Institute fiir Informatik und Praktische Mathematik,
Christian-Albrechts-Universitdt Kiel, Olshausenstr. 40, D-2300,
Kiel 1, Germany

P.W. Hemker, Centre for Mathematics and Computer Science, Department
of Numerical Mathematics, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands

M.Y. Hussaini, Institute for Computer Applications in Science and
Engineering, Mail Stop 132C, NASA Langley Research Centre,
Hampton, Virginia 23665, USA

C.J. Judd, Department of Mathematics, Coventry (Lanchester)
Polytechnic, Coventry CV1 5FB, UK

J.F. Maitre, Département de Mathématiques Informatique Systémes,
Ecole Centrale de Lyon, B.P. 163-69131, Ecully, Cedex, France

S. McCormick, Department of Mathematics, Colorado State University,
Fort Collins, Colorado 80523, USA

F. Musy, Départment de Mathématiques Informatique Systemes, Ecole
Centrale de Lyon, B.P. 163-69131, Ecully, Cedex, France

T.N. Phillips, Institute for Computer Applications in Science and
Engineering, Mail Stop 132C, NASA Langley Research Center,
Hampton, Virginia 23665, USA



xii LIST OF CONTRIBUTORS

J. Ruge, Gesellschaft fiir Mathematik und Datenverarbeitung, Postfach
1240, D-5205 St. Augustin 1, West Germany

T. Scott, UKAEA, Winfrith, Dorchester, Dorset DT2 8DH, UK

P. Sonneveld, Department of Mathematics and Informatics, Delft
University of Technology, Julianalaan 132, 2628 BL Delft, The
Netherlands

K. Stiiben, Gesellschaft fiir Mathematik und Datenverarbeitung, Postfach
1240, D-5205 St. Augustin 1, West Germany

J.H. Tabor, Department of Mathematics, Coventry (Lanchester)
Polytechnic, Coventry CV1 5FB, UK

P. Wesseling, Department of Mathematics and Informatics, Delft
University of Technology, Julianalaan 132, 2628 BL Delft, The
Netherlands

T.A. 2ang, NASA Langley Research Center, Mail Stop 132C, Hampton,
Virginia 23665, USA

P.M. de Zeeuw, Centre for Mathematics and Computer Science, Department
of Numerical Mathematics, Kruislaan 413, 1098 S5J. Amsterdam, The
Netherlands

0.C. Zienkiewicz, Civil Engineering Department, University College of
Swansea, Singleton Park, Swansea SA2 8PP, UK



CONTENTS

List of contributors

1.

lo.

11.

12.

Introduction - Levels and Scales by A. Brandt
Multigrid Methods of the Second Kind by W. BHackbusch

Some Implementationg of Multigrid Linear System Solvers by
P.W. Hemker and P.M. de Zeeuw

Multigrid and Conjugate Gradient Methods as Convergence
Acceleration Techniques by P. Sonneveld and P. Wesseling

Efficient Solution of Finite Difference and Finite Element
Equations by J. Ruge and K. Stiliben

Algebraic Formalisation of the Multigrid Method in the
Symmetric and Positive Definite Case - A Convergence
Estimation for the v-Cycle by J.F. Maitre and F. Musy

A Variational Theory for Multi-Level Adaptive Techniques
(MLAT) by S. McCormick

Spectral Multigrid Methods for Dirichlet Problems by
T.N. Phillips, T.A. Zang and M.Y. Hussaini

MG Techniques for Staggered Differences by B. Favini and
G. Guj

Multigrid Analysis of Linear Elastic Stress Problems by
K.E. Barrett, D.M. Butterfield, S.E. Ellis, C.J. Judd and
J.H. Tabor

Multigrid Methods for Oil Reservoir Simulation in Three
Dimensions by T. Scott

A Multigrid Algorithm using a Hierarchical Finite Element
Basis by A.W. Craig and 0.C. Zienkiewice

Subject Index

Author Index

xi

11

85

117

169

213

225

231

253

263

283

301

313

321



INTRODUCTION - LEVELS AND SCALES

A. Brandt

(Department of Applied Mathematics,
The Weizmann Institute of Science, Israel)

Open your eyes and you see multi-level processes all around. They
have always been here. The organization and operation of military forces
is an obvious example: soldiers are grouped in squads, which in turn are
grouped in sections, grouped in platoons, then in companies, battalions,
regiments, brigades, divisions, corps and armies. Civil society, less
strict and more complicated, still operates in a variety of hierarchical
structures: geographical, economical, political, judicial, educational,
and so forth.

Such hierarchies are necessary because there are very many, sometimes
millions, interdependent decisions to be made; they cannot be made by one
governor, because of their multitude and their complicated interdepend-
ence, nor can they be decided by many independent administrators without
being coordinated with each other. The hierarchical structure effectively
deals with this situation by exploiting the fact that each decision has a
certain "scale". The location of a new hospital, for example, is a
decision which has the scale of a district. It strongly affects the
district served by it, marginally affects neighbouring districts, and very
weakly affects others. The decision can therefore be made by a certain
administration assigned to the district, in some coordination with
neighbouring administrations. The decision cannot effectively be
negotiated at a too low administrative level, e.g., at the level of
individual families living in the district; the relevant information
(concerning needs, constraints, etc.) must be gathered into one point of
decision. Similarly, the general outline of principal throughways should
be decided at the inter-state level, while local back roads should be
regulated at the district or town levels.

The two kinds of roads should be connected, of course. The effective
way to manage the inter-dependence between the different levels is based
on the assumption that global decisions should only marginally be
affected by local ones (otherwise the latter would not be local). Thus,
ideally, a two-level hierarchical structure should operate in the
following way. The global government first gathers some general figures
summarized at the local level, representing sum totals of local needs,
important overall constraints, etc. Based on these it prepares
preliminary global plans. These global plans give the local governments
the framework for devising their own, more detailed, plans. In course of
doing that, the local government may realize that some, usually marginal,
aspects of the global plans do not quite fit the local situation and,
therefore, need some adjustments or corrections. So, at a second round,
the global government again gathers information summarized at the local
level, now representing sum totals of needed corrections ("defect
corrections", in the language of numerical analysts). Since in practice
this process is seldom fully recognized, let alone fully effectively
organized, more such rounds may be needed. When more levels of
government are involved, the process is applied recursively, in a variety
of manners.
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For very much similar reasons, iterative hierarchical procedures,
similar to the process we have just described, are very efficient in
solving large and complicated problems on computers. Such procedures
were naturally introduced to solve problems where the hierarchical
structure was already explicit in the problem itself. A good example is
the field of production planning, notably in the Soviet Union, where
hieraxchic divisions into sectors and pyramidal management naturally led
to the introduction of iterative "aggregation/disaggregation" (a/d)
algorithms, starting in the mid sixties (Dudkin and Yershov (1965)) and
growing in the seventies into extensive Russian literature on iterative
a/d procedures for large linear programming problems (see Vakhutinsky,
Dudkin and Ryvkin (1979)). Multi-level approaches have in fact quite
naturally emerged in all branches of computer technology, as in the
structured organization of computer hardware (see for example Stone
(1972)), the top-down structured design of software (Yourdon,

Swann (1978)), the pyramidal data structures (trees, heaps, etc.) and
many of the most efficient algorithms in computer science, such as fast
sorting (sorting n numbers in O(n log n) operations) the "divide and
conquer"” class of algorithms, etc. (See, e.g., Aho, Hopcroft and Ullmann
(1974) . Most of these procedures are not iterative, though.)

Also, for very much the same reasons, multi-level algorithms have come
forth as the most efficient algorithms in solving the very large
algebraic systems arising in discretising partial differential boundary
value problems, especially those describing steady-state physical systems.
Here the fully hierarchical structure is not at all generally explicit in
the problem itself, so it took some effort, and interesting historical
development, to realise it. Fully effective multi-level algorithms were
first developed as direct, not iterative, solvers, treating very special
gituations where it was algebraically clear enough how to construct
recursively hierarchical solvers. I refer here to the fast solvers based
on fast Fourier transforms (FFT) and/or reduction methods, especially
the cyclic odd-even reduction, both of which are clearly recursive, but
non-iterative, multi-level processes (see Buzbee, Golub and Nielson
(1970), Hockney (1970) and Temperton (1979)). The total reduction method
also belongs to this class (see Trottenberg (1977)). The solution of n
equations by this kind of solvers require at most O(n log n) computer
time and storage, but the class of problems for which this full
efficiency is attained is quite limited: separable problems, essentially
meaning constant-coefficient elliptic equations with constant-coefficient
boundary conditions on rectangular domains. This class has been
substantially enlarged by using these fast solvers, and various
combinations of them, iteratively. Thus, for example, if the
coefficients are not constant but sufficiently uniform, the iterative
application of a constant-coefficient fast solver can be very effective
{the number of iterations depending on the uniformity of the coefficients,
but not on the meshsize). Extensions to domains of arbitrary shapes have
been obtained by "capacitance matrix methods", using the fast direct
solvers iteratively, with conjugate-gradient acceleration, each solution
typically costing the equivalent of some 15 applications of the fast
solver (see e.g. Proskurowski (198l)). The nested-dissection approach
to elimination ordering (George and Lin (1981)) is another powerful
multi-level approach, more general but less efficient than the FFT and
reduction solvers.
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Meanwhile, steady-state PDE problems and the solution of their
discretised equations were examined from two other points of view, which
jointly led to the realisation that each such problem contains a natural
hierarchy of levels, not immediately explicit, but very powerful and
much more general than the mechanical hierarchy exploited by the above
methods. First, studying reasons for slow convergence of various
relaxation solvers, it became clear that relaxation is a "local" process
which cannot efficiently treat "glcobal" or "smooth" soclution components.
A smooth error component shows relatively small "residuals", i.e., small
errors in the individual difference equations. The smooth error can be
much larger than shown by the residuals because, throughout a large
region, these residuals have the same sign, so they reinforce each other.
Now, since the relaxation corrections are based on the individual
residuals, they are necessarily small compared with the actual error, if
the latter is smooth. Thus, in order to get a correction comparable to
a smooth error, information concerning the residuals throughout suffi-
ciently large regions must be summed up to one point of decision, very
much as in the case of global social decisions mentioned above. The size
of the regions over which residuals should be summed up - so that a
correct picture about the error magnitude is obtained - must be comparable
to the scale of the error, i.e., to the typical distance over which the
error substantially changes. As long as each relaxation step (each step
of correction) works on a much smaller scale, convergence must be slow.

A second, complementary viewpoint evolved from examining the nature of
the discretisation error, i.e., the difference between the true solution
of the differential problem and the exact solution of the discretised
equations. The relative magnitude of this error is clearly determined by
the relative magnitudes of the discretisation meshsize and the solution
scale. A smooth solution, which is a large-scale solution, can thus be
approximated on a coarse grid. The same is obviously also true for a
smooth error. Thus, it became clear, exactly those errors that are slow
to converge by relaxation processes on some fine grid can be approximated
on a coarser grid, where the meshsize is comparable to their scale and
hence their convergence need not be slow.

A natural hierarchy of levels emerges, based on viewing the solution to
each boundary value problem as a linear combination of components with
different scales. Each component is most effectively controlled by grids
with meshsize comparable to its scale, and efficient multi-level control
can thus be realised as a multi-grid processing.

A two-grid process, for example, is fully analog to the ideal operation
of the two-level hierarchical government described above. The problem
is first represented on the coarser grid, e.g., by averaging its
equations to the scale of that grid. The {(approximate) solution to the
resulting coarse-grid problem, once computed, is then interpolated to
the fine grid, serving there as a first approximation, a framework, to be
next improved by fine—grid processes, such as relaxation. This fine-grid
processing finds the fine features of the solution which were invisible
to the coarser grid, and also, as a result, encounterssome residuals of
global (smooth) errors, which it cannot efficiently reduce. (These are
smooth errors caused by aliasing, i.e., by the previous coarse-grid
processing having misinterpreted coarse-grid traces of the fine features.
Now that those fine features have been removed from the error by the fine
processing, that aliasing error becomes the dominant one.) So, in the
next round, the residual problem is approximately transferred, by some
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averaging, to.the amoarse grid, where it can efficigntly:be solved and
its solution is then interpolated back to the fine grid and added as a
correction to the previous fine-grid solution.

The process just described is the two-level "full multigrid" (FMG)
algorithm. It can be used recursively in a variety of manners in case
more levels are involved.

The number of levels that should be used depends on the ratio between
the size of the domain and the finest scale one wants to see in the
solution. Between these two scales as many should be introduced as
practical. Namely, the ratio between successive scales (successive
meshsizes) should be as small as possible, as long as this does not
substantially increase the total number of gridpoints. The ratio 1:2
between successive meshsizes is very convenient: the total number of
gridpoints is still dominated by their given number on the finest grid,
but successive meshsizes are close enough to effectively treat any
solution component. In fact, with such a ratio, the experience so far
showed that suitable FMG algorithms could solve all test problems "to
the level of truncation error" (i.e., to the point where the error in
approximating the differential solution is dominated by the
discretisation error, not by the error in solving the discrete system) in
just few (less than 10) "work units", where the work unit is the amount
of operations involved in expressing the given (finest-grid) system of
discrete equations. The 1:2 ratio is also most convenient in
programming the inter-grid transfers. Note that in this respect the
multigrid processing is different from multi-level social structures.
Its levels are chosen much more tightly, to achieve maximum efficiency.

Note also that the decomposition of the PDE solution into
components of different scales is only implicit; it is used above to
motivate and explain the validity and strength of the multigrid process;
but the actual multigrid algorithm does not use any such decomposition.
It only transfers equations ( or residual equations) from fine grids to
coarse grids, and solutions (or corrections) from coarse to fine.
Decomposition in terms of Fourier components, in particular, can be used
as a powerful tool to analyse, and even exactly predict, the performance
of multigrid algorithms, but the algorithms themselves do not employ
such decompositions, and their efficiency extends far beyond the cases
where the Fourier analysis 1s rigorously wvalid. (Incidentally, it is
important to realize that in some cases Fourler analysis is the wrong
tool to separate local effects from global ones. For example: a local
discontinuity gives rise to global high-frequency Fourier components.
Other tools should then be used to understand quantitatively, and
optimise, the multigrid performance.)

The FMG solvers (solving discretised PDEs to the level of truncation
errors) have been developed to the point that they are today even faster
than the FFT and reduction solvers mentioned before. (The multigrid
Poisson solver described in Barkai and Brandt (1983) is the fastest we
know.) More importantly, of course, these FMG solvers are much more
general. They solve with the same efficiency (i.e., in few work units)
complicated nonlinear systems on general domains. Moreover, it is
possible to integrate into each application of an FMG solver, for small
extra computer work, various processes of local mesh refinement, mesh
optimisation and local coordinate transformations, making it very
effectual in treating singularities, unbounded domains, curved
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boundaries, boundary layers, discontinuities, etc.

Furthermore, multigrid solvers can be directly applied to "higher"
problems - such as optimisation, optimal design and optimal control
problems, or system identification problems - whose solution would
normally be accomplished through solving a sequence of boundary value
problems. An important principle indeed is always to try to multigrid
the given, original problem, instead of merely using fast multigrid
solvers to a sequence of intermediate subproblems. The original problem.
(e.g, the optimisation problem itself) should first be solved on a
coarser grid, then relaxed on the finer grid (including for example,
local optimisation of parameters, in case same of the functlons to be
optimised do have local scales), then brought back to the coaxser grid,
ete:. The entire solution of the original problem may thus cost only few
work units. Multigridding the original problem is especially
advantageous in case that problem is autonomous (i.e., having solution-
dependent but not directly space-dependent coefficients, as for example
most fluid dynamic problems), while the subproblems are nonautonomous
(having coefficients spatially depending on the solution of a previous
subproblem) .

Sometimes it is still required to solve a sequence of subproblems. A
typical example is the interactive design of a certain structure, where
between two solutions of the system the structure is changed in some
specific parts and/or in some of its global parameters. The new solution
can then be obtained from the old one by a remarkably short multigrid
processing, in which the finer grids are relaxed only around the changed
parts. This technique may allow the design of a large structure to be
done mostly in core memory, since for several design steps only the
currently designed parts, and some neighbouring parts, should fully be
kept in memory while the rest of the structure may be represented by
coarser grids (using the FAS version of multigrid). Re=-solving by such
techniques should be so efficlent as to allow the designer to introduce
some changes to a large structure and immediately view the new solution
on the screen.

Similarly, in evolution problems with implicit time differencing, the
solution of a new system of equations seems to be required at each time
step. Each of these systems could be solved very efficiently by an FMG
algorithm, costing the equivalent of just few explicit time steps. But,
here again, multigrid techniques may be even more effective if they are
designed in terms of the original evolution problem itself. For example,
one can often drastically reduce the overall work by exploiting the fact
that the solution is a superposition of pure convection and smooth
changes, or changes which are smooth throughout most of the domain,
hence requiring fine-grid interactions only at some small subdomains.

The full efficiency of multigrid solvers, as described here, is not
easy to obtain, though. It sometimes depends on the correct treatment of
each feature of the problem at each multigrid stage. Many things can
easily go wrong, such as relaxing a certain boundary condition in a way
which conflicts with the interior smoothing; or improper fine-to-coarse
transfers of boundary conditions and their residuals; or treating at
relaxation conditions which seem local but are not; or using a relaxation
scheme which is not as powerful a smoother as it should, and can, be; or
wrong order or type of interpolations; or any inadequate treatment of any
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difficulty, from structural singularities (e.g., reentrant corners) to
discontinuities in the solution or in the equations, anisotropies,
non-ellipticity, etc., etc. A single mistake at any of these may
substantially degrade the whole performance, not to mention plain
programming bugs, which, due to the corrective nature of the algorithm,
may well disguise themselves in the innocent form of slow convergence.
To obtain full efficiency it is therefore necessary to construct the
algorithmic concepts and the actual programs in a gradual, systematic
way, using available knowhow (see 'Hackbusch and Trottenberg (1982) ,
Brandt (1984)).

The class of partial differential equations that can be solved by
multigrid solvers has been ever extending, from second order equations to
arbitrary orders, from linear to nonlinear, from smooth coefficients to
strongly discontinuous ones (Alcouffe, Brandt, Dendy and Painter (1981)),
from definite to indefinite problems, from scalar equations to general
systems (Brandt (1984) §3.8), and from elliptic type to other types.

Unlike evolution problems, where properties like hyperbolicity and
parabolicity are all important, the only feature that matters concerning
the type of the differential operator in (stationary) boundary value
problems is whether it is nicely (isotropically) elliptic or not. If it
does not have a good ellipticity measure, it does not make any difference

whether it is anisotropic elliptic (like e32/3x2+32/3y2) or semi-elliptic,
weakly elliptic (e.g., having elliptic singular perturbation), hyperbolic
or any other nonelliptic type. All these types have the same basic
difficulty and can be treated essentiallly by the same approach. The
difficulty is that the solution scales discussed above are not isotropic.
(Incidentally, one dimensional problems, such as du/dx = f, are
elliptic, unlike their two-dimensional counterparts. Their use as

models for treating non-ellipticity is thus erroneous.) In other words,
at each point in the domain of the problem there passes a "characteristic
line" (sometimes just a characteristic surface; and in case of non-scalar
PDEs there may pass several such lines or surfaces at each point,
corresponding to different solution components) such that a "global"
error component (in the sense that its residuals are small compared

with its size) can change rapidly in directions perpendicular to the
characteristic lines. Such global but rapidly changing components are
called characteristic components. As global components, their conver-
gence by relaxation is inefficient, but as rapidly changing components
they cannot be well approximated by coarser grids.

The key for efficient multigrid treatment of such anisotropic problems
is to distinguish clearly between two very different situations,
depending on whether or not one wishes to approximate characteristic
components far from boundaries, where "far" is meant relative to the
component's smaller scale, i.e., the scale of its rapid change
perpendicular to the characteristic. To so approximate characteristic
components by the discrete system, the grid must (roughly) be aligned
with the characteristic lines throughout the domain. Fast multigrid
solvers can then be based on these aligned gridlines, either by
relaxing these gridlines simultaneously, or by coarsening the grid only
along these lines and not in the perpendicular directions. (The latter
approach is preferred when the characteristics are surfaces rather than
lines.}) If, on the other hand, the grid is not consistently aligned
with the characteristics , then characteristic components cannot be
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approximated far from boundaries (except accidentally, in some regions of
accidental alignment), and it is then unwise to attempt to have fast
algebraic convergence for such components. This convergence, which is
meaningless in terms of approximating the differential solution, is harder
to obtain: costlier and more complicated relaxation schemes and/or
intergrid transfers must be developed, and even then fast convergence is
not always guaranteed. It is absurd;-we believe, to invést mast of

your computer resources and programming effort to get fast algebraic
convergence exactly for those components whose algebraic solution is
generally (out-side accidental regions of alignment) no approximation to
the differential solution.

This fashion in treating anistropy, as well as some other developments,
has led to the recognition that fast algebraic convergence should not be
the main objective of multigrid solvers. The objective is of course to
get the desired accuracy, in terms of solving the differential problem,
for minimal computer (and also human) resources. This is obtained by FMG
solvers which, especially in cases of anisotropic equations without
corresponding grid alignment, do not necessarily employ uniformly good
smoothers, hence nor do they attain uniformly good algebraic convergence
rates. Working with such solvers requires of course certain modifications
in the traditional "smoothing factor" approach for measuring the
effectiveness of relaxation (see Brandt (1984), §20.3.1), as well as
new approaches for a priori predicting, and a posteriori judging, the
overall success of the FMG solver, (see Brandt (1984), §7.4, §7.5 and
§1.6). An important advantage of these approaches for performance
evaluation is that the performance becomes less sensitive to the precise
treatment of all problem features at all algorithmic stages.

These approaches also allow the evaluation of important schemes which
deliberately avoid any algebraic convergence. Such for example is the
"double discretization" scheme (Brandt (1984), §10.2), which employs less
accurate, stable discretizations in relaxation processes, and others,
more accurate but not necessarily stable ones, in the fine-to-coarse
transfers of residuals, thus combining easier local stability with higher
global accuracy.

Another interesting development has recently led to the extension of
multigrid-like techniques to cases where no grid is actually present. It
started, in a way, with the development of usual multigrid algorithms for
diffusion problems which were isotropically elliptic but in which the
diffusion coefficients were strongly discontinuous. It turned out
(Alcouffe, Brandt, Dendy and Painter (1981)) that to obtain the usual

multigrid efficiency in such cases, the coarse-to-fine interpolation of
corrections should be based on the difference equations themselves,

rather than being the standard polynomial interpolation. This later led
to the recognition that interpolation can be based solely on the algebraic
equations, without even using the geometry of the grid. 1In a similar
manner, the fine-to-coarse transfer of residual equations can completely
be based on the adjoint (transposed) algebraic system. Since these
intergrid transfers are what give the coarse grid a definite meaning, it
was further realized that even the choice of the coarse-grid variables

can be freed from its traditional geometric context, and purely "algebraic
multigrid" (AMG) schemes were introduced (Brandt (1983), Brandt (1984),
§13.1, Brandt, McCormick and Ruge (1984), Ruge and Stiiben (1984)). In
these schemes the selection of coarser levels is based on the principle
that each variable of any level should have a sufficiently strong "total
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algebraic connection" to variables of the next-coarser level. The entire
processing is thus made in terms of the given (sparse) algebraic system
of equations, with no reference to their geometric origin. AMG algorithms
can thus be used as very efficient "black box" solvers for important
classes of matrix equations. (For some other classes the current AMG
solvers are not suitable.) The typical multigrid efficiency is obtained
by AMG even for cases where it would be very difficult to construct con-
ventional (geometric) multigrid algorithms, such as cases of finite
element discretisation on arbitrary, irregular triangulations, or even
cases where topologically rectangular grids are used, but with highly and
non-uniformly stretched coordinates (Lagrangian discretizations in
particular) or with peculiarly distributed physical coefficients. In
addition, AMG solverscan be applied to many large algebraic systems which
are not at all derived from continuous problems, such as the geodetic
problem treated in Brandt, McCormick and Ruge (1983) .

The scope of multi-level computations has thus been extended very much.
To state it most broadly, consider any matrix equation Ax = b. (That the
system is linear is not really essential; but it simplifies the following
statements.) Denote by ¥ the evolving computed approximation to x, and
define the error vector e = x -~ ¥ and the normalized residual vector

r=(r;) = (aie/ﬂaiﬂ), where a, is the i-th row of A and -1 is the %y

norm. For a suitable relaxation scheme it can be shown (Brandt (1983),
Theorem 3.4) that the decrease in lel per sweep can be slow only when
lrl<< lel, since r is properly normalized, for most error components Izl
is comparable to lel. Hence, convergence can be slow only for special
types of error components. Slowly converging errors can therefore be
approximated by far fewer parameters, that is, by a much smaller algebraic
system — a coarser level. To exploit this fact one of course needs some
characterisation for those vectors e for which Izl << lel. 1In case the
matrix A approximates a differential operator L, those vectors e
approximate functions v for which lZvl << |Z|lvl. This usually implies
smoothness of v, or, when L is anisotropic, at least smoothness in
characteristic directions. 1In other cases other characterisations can be
found, so the general rule which emerges is that slow convergence should
always be avoidable.

This corresponds, more or less, to the "golden rule of computational
physics", which states that the amount of computational work should be
proportional to the amount of real physical changes in the computed
system. Stalling numerical processes must be wrong. Indeed, multi-level
processing is a general vehicle to effect this rule. So, whenever you
have stalling computations — either in the form of slowly converging
iterative procedures, or in the form of computational grids, in space and/
or in time, which almost everywhere tend to excessively over-resolve the
scales of real physical changes — try to think in terms of multi-level
technigues.

Multi-level methods are now in the process of being introduced into a
variety of new fields, including various systems of tomography, image
processing and pattern recognition; statistical physics; queueing theory;
network simulation and design; geodesy; multivariate interpolation; large
transportation problems and linear programming. The aggregation/
disaggregation methods developed earlier for linear programming can now be
improved by an AMG-type approach, because the latter provides a more
mathematical basis for defining the levels, hence "tighter" hierarchies,
exploiting implicit levels not necessarily recognized by the real-life



