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PREFACE

The material in this monograph is based on a dissertation of the same
title that was submitied in partial fulfillment of the requirements for a Ph.D.
in engineering at the University of California, Los Angeles. The research
was supported in part by grant AFOSR 6268, contract AF 33(651)-7154.

This monograph is an attempt to present a complete synthesis technique
for linear time-variable systems, an area of research that has not been receiv-
ing sufficient attention in recent years. The analysis problem is treated
briefly in chapter 3. The reader is assumed lo have a knowledge of the funda-
mentol properties of linear ordinary differential equations.

I wish to thank Professor C. T. Leondes of UCLA for his advice and en-
couragement while this work was being done, Dr. E. B. Stear with whom 1
worked on the material in chapter 3, and finally my wife, May, for her help
and undersianding.

A.R.S.
Los Angeles, April, 1964
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Chapter 1

INTRODUCTION

The analysis and synthesis of linear time-invariant systems have, to a
great extent, dominated the efforts of engineers in all fields. As a result,
a large body of literature on these subjects presently exists at the ex-
pense of linear time-variable and nonlinear systems. The reason for this
domination stems, first, from the fact that general techniques for the
analysis, and consequently the synthesis, of linear time-invariant sys-
tems are relatively simple compared to those for linear time-variable and
nonlinear systems. Secondly, many linear time-variable and nonlinear
systems can be adequately approximated (in some sense) by a linear
time-invariant system.

The purpose of this monograph is to partially fill some of the voids in
the areas of analysis and synthesis of linear time-variable systems. In
particular, the results are slanted toward the field of feedback control
systems; they are not, however, limited to this area. The problem of
analysis is considered in some detail (chap. 3), but the primary concern
is with the problem of synthesis,

It might be added that the techniques and ideas have been developed
in enough detail that they are valuable from a practical standpoint.
Many of the problems that are most likely to be encountered in a prac-
tical design situation have been examined. As a result, a large class of
linear time-variable systems can be synthesized by means of the tech-
niques developed in this monograph.

DEFINING THE SYSTEM

Any process that produces a response (output) when an excitation
(input) is applied to it, can be called a system (the term transmittance is
also used). A system may be depicted as a block as in figure 1.1 where W
represents the system,
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x(t) y(t)

w

Figure 1.1. A general system.

x(f) represents the input, y(¢) the output, and ¢ is the independent vari-
able. If, in addition, the system W is linear, then it must satisfy the
following definition:

DEFINITION.
If 1. an input x, produces an outpul yy,
2. an input xy produces an output y,, and
3. an input c1x1 4+ caxe produces an ouipul cy: + cays
where %1, %3, ¥1, and Yy, are arbitrary functions of ¢ and
¢1 and cq are arbitrary constants, then W is a linear sysiem.

The definition includes a wide variety of systems, for example, dis-
tributed-parameter, lumped-parameter, constant-coefficient, and vari-
able-coefficient. This monograph is limited to the investigation of the
class of linear systems that can be described by an ordinary linear dif-
ferential equation of the form

n di n dix
Yol 2= Y b)) s TSt< A+,
=0 ar o ast '
. (1.1)
diy :
s =0: 1‘=051727"'y"’_11
dt' t=1

where the independent variable ¢ is time, 7 is the time of application of
the input, the a;(f) and 5,(f) are continuous and deterministic functions
of time, y(¢) is the output of the system, and «(¢) is the input. In addition,
a,(t) is assumed to be unity (without loss of generality), and any or all
of the &;(f) may be zero in a particular case. This requires that the order
of the operator (the upper limit on the summation)

n d'l'
1{3
T

is always equal to, or greater than, the order of the operator
> 0~
- dr

In a physical system this means that there are no net differentiations
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between the input and the output, which is a valid constraint from a
physical standpoint (see chap. 4). In the following text, the operator

.~..26 a:(t) =

will be referred to as the integral operator of equation (1.1), since it indi-
cates that an integral operation must be performed on the input to gen-
erate the output. Similarly, the operator

n di
bi(t -
200 5

will be referred to as the differential operator, since it indicates that a dif-
ferential operation is performed on the input in the system.

Another method of defining the types of systems investigated in this
monograph is by means of their weighting functions. A linear differential
equation of the form in equation (1.1) has associated with it a weighting
function (unit impulse response function) W(t, 7) of the form (refs.

3], [16], [21])

W, r) = 2 8:(Mg() + 8¢ — 1), t2,
1 (1.2)
=0, t<m,
where 8(: — 7) is the Dirac delta function, the ¢;(¢) are linearly independ-
ent solutions of the homogeneous portion of equation (1.1), that is,

= - dig; R
Yal) —=0, =1,2,---,m, (1.3)
om0 dtt

aﬁd the B;(r) are given by ,
n ds’
Bi(r) = 22 (—1)";7 [b:(Mas(n)], (1.4)
= T

in which the a;(r) are determined from the set of simultaneous equations

ay(r)qi(r) + - -+ + an(r)ga(r) = 0,

dg dg.(r
w2 g)=m
----------- T (1.5)
n—1 NG dn—ln.r
al(T)d q()+ e q()= L
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The condition that W (¢, 7) be zero for { < 7 guarantees that the system
is physically realizable. The equivalence of a weighting function of the
form in equation (1.2) with a differential equation of the form in (1.1)
is discussed in Appendix I. It is shown that, subject to the necessity of an
adequate number of derivatives of the 8;(r) and ¢,(¢), a differential equa-
tion of the form in equation (1.1) can be generated from a weighting
function of the form in equation (1.2). Because of this equivalence, either
equation (1.1) or (1.2) may be used to define a particular system.

PrEvVIiOUS WORK

The previous work in the analysis and synthesis of linear time-
variable systems in engineering applications may be conveniently
classified according to the mathematical representations, called transfer
functions, used to describe the systems. Evaluation of this work must
depend a great deal upon the various properties of these mathematical
representations.

In evaluating the representations, three important criteria aré these:

1. How difficult is it to arrive at the representation?

2. How much information about the system response is readily avail-
able from each representation?

3. How difficult are the operations of combining (cascade and parallel
combinations, etc.) and manipulating systems when they are de-
scribed by the representation?

The three most general types of transfer functions are the following:

1. Weighting functions.

2. Time-variable frequency response functions.

3. Differential equations.

Techniques for generating integral transforms for general linear fime-
variable differential equations have also been developed [1], [14]; how-
ever, these techniques have proved to be too specialized or too difficult
for use in a general theory that includes both analysis and synthesis.

Weigiting Functions (refs. [3], [5], [13], [15], [18], [20], [21], [30])

The weighting function has long been used as a tool in the analysis of
linear systems. Its value lies in the fact that knowledge of the weighting
function allows the response of a system to be determined for any input
by means of the convolution integral; that is, if W(, r) is the weighting
function of a linear system, then for an input x(f) the output y(¢) is
given by

¥(2) =f W, r)x(7) dr. (1.6)
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Thus from the standpoint of criterion (2), the weighting function is an
excellent method of representation.

Problems associated with the weighting function are that it is very
difficult to determine for a given general linear time-variable differential
equation, and that usually it is not expressible in a closed form. In both
analysis and synthesis these difficulties may rule out the weighting func-
tion as a useful representation. Actually, the amount of difficulty associ-
ated with determining a weighting function depends upon the form of the
differential equation.

To answer criterion (3), the three critical operations of combination of
systems will be examined. These operations are the following:

1. Parallel combination of systems.

2. Cascade combination of systems.

3. Finding an inverse system.

A parallel combination of systems is illustrated in figure 1.2. Let the
svstem W, have the weighting function W,(¢, r) and the system W, have

7
", b/ (1)
x(t) +  y(t)
1
W, »(1
a.
Cx/f} W yl fé
b.

Figure 1.2, Parallel combination of systems.

the weighting function Wy(s, 7); then

(o) = f Wat, 7)a(r)dr,

yot) = f We(t, 7)x(7) dr, 1.7
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and

¥(®) = 30 + 50 = f [Wit, 1) + Wt 7)]2(7) dr.

Then the system W in figure 1.2, b, which is equivalent to figure 1.2, g, has
a weighting function W(f, r) given by

W@, r) = Walt, 7) + Walt, 7). (1.8)

Obviously if y(t) = ¥:(t) — y2(f) then the equivalent system has the
weighting function

Wi, )= Walt, 7) — Wa(t, 7). (1.9

A cascade combination of systems is illustrated in figure 1.3. Again

X1 2 W —%

a.

— W |—

b.

Figure 1.3. Cascade combination of systems.

let W, have the weighting function Wi(¢, ), and let W, have the weight-
ing function W,({, 7). Then

90 = [ Wit 0360) o,

t (1.10)
20 = [ Watt, a(r) ar
combining these equations,
t [
y(t) =f dew (t, o)f Wa(6, 7)x(7) dr
N - (1.11)

_ f_ " dr x(r) [ Wt ) Wa(0, 7)db.
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The equivalent system W (fig. 1.3, ) then has the weighting function

Wi, = [ Wi, 0w, nas (1.12)

The final necessary operation, the finding of an inverse system, is
illustrated in figure 1.4. Two systems are inverse to each other if, when

X W Z w_l X

Figure 1.4. Inverse systems.

%(?) is applied as an input to the cascade combination of these systems,
the output is also «(f). The system equivalent to this cascade combina-
tion evidently has as its weighting function a Dirac delta function. This
is apparent from the convolution integral

5 = [ 86~ x(s) dr = ). (1.13)

—

Then by virtue of equation (1.12) the weighting function of the inverse
system, W-1(t, 7), is the solution of the integral equation

(t—1) = le“l(t, oW, ) ds, (1.14)

T

in which W(t, 7) is the weighting function of W.

The three necessary operations for combining systems represented by
weighting functions are then defined by equations (1.8), (1.12), and
(1.14). The first two operations are simple and straightforward, but the
third—the finding of an inverse—is generally difficult. In addition, the
solution may be in the form of an infinite series, which will prove to be
too unwieldy to manipulate in the synthesis problem, and the solution
must therefore be approximated, usually by truncating the series.

Mal’chikov [18] and Gladkov [13] have examined the problem of syn-
thesizing a given time-variable weighting function as a feedback system
using modified versions of these techniques of combination. The dis-
advantage of their scheme is the requirement that an integral equation
must always be solved. Cruz and Van Valkenberg (8], by synthesizing
linear time-variable systems in an open-loop configuration, do not en-
counter the problem of finding inverses.
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Time-Variable Frequency Response Functions

The concept of the time-variable frequency function representation of
a linear time-variable system was introduced by Zadeh [27], [28], [29].
Because of its close relationship to the system weighting function, its
properties are, from the standpoint of the three criteria above, equiva-
lent to those of the weighting function.

The time-variable frequency response function, which is denoted
H(jw, 1), is related to the weighting function by the pair of integrals [30]:

H(jw, t) = f W, r)e ¢ dr, (1.15)

1 ]
W, ) = ﬂf H(jw, e =" dw, (1.16)

Equation (1.15) may be considered the definition of H(jw, {).

The amount of work involved in determining H(jw, £) from a differ-
ential equation is equal to that necessary for determining W(s, 7). The
output ¥(¢) of the system for a particular input x(¢) can be determined
from the intégral

_ 1 * . X(s jot
) = - f_ B, 0X(jo)e da, (1.17)

where X(jw) is the Fourier transform of %(t). Apparently H(jw, {) con-
tains as much readily available information as the weighting function
and, in general, more than the differential equation.

The techniques for combining time-variable frequency response func-
tions can be obtained immediately by applying the definition in (1.15) to
equations (1.8), (1.12), and (1.14). For combining H;(jw, {) and Hy(jw, i)
in parallel, equation (1.8) becomes

H{jw, t) = Hq(jw, ) + Ho(jw, t). (1.18)

For combining H;(jw, {) and Hy(jw, t) in cascade, equation (1.12)
becomes

1 -]
B, ) = f Hyljoo + jo, et
T w0

. {]:Hg(jw,o)e—fwdo} do'. (1.19)

Finally, the inverse of H(jw, {) can be determined by solving the integral
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equation
1 © ]
1= —-—f H '(jw 4+ jo', t)e™"!
2r J _,

. {f H(jw, §)e "8 dG} do’, (1.20)

which is the equivalent of equation (1.14). Obviously the same difficulty
encountered in determining inverses for weighting functions is present
in determining inverses for time-variable frequency response functions.

Engineers have found little use for the time-variable frequency re-
sponse function beyond the analysis of some linear time-variable electri-
cal networks. They have done almost nothing with it in the area of syn-
thesis of systems, since in the choosing of an overall response function the
correlation between the system output and the response function is not
readily apparent, as it is, for instance, in the case of weighting functions.

Differential Equations

Differeniial equations are the most common form of representation for
a physical system, for the reason that physical laws (such as Ohm’s
law and Newton’s law) when applied to a particular system produce as
governing equations, differential equations. To determine the response
of the system, these equations must then be solved. Obtaining the solu-
tion of a general linear time-variable differential equation is difficult;
therefore, a differential equation generally contains less readily avail-
able information about system response than a weighting function or
time-variable frequency response function. From the standpoint of the
first two criteria above, differential equations rate high with respect to
the first and low with respect to the second.

The techniques for combining differential equations are developed in
chapter 2. With respect to the third criterion, it will be seen that dif-
ferential equations rate very high. Previous work in the area of techniques
for combining differential equations is limited to a few papers by Darling-
ton [9]-[11], in which he briefly mentions that such techniques might
be used, but he neither develops nor makes use of them.

In this discussion some of the advantages and disadvantages of the
three general representations of linear time-variable systems have been
discussed. The discussion is not to imply that one representation should
be used to the exclusion of the others. By judicious use of all three, if
they are readily available, there may be a great saving in time in analyz-
ing and synthesizing such systems.
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ScoPE OF THE MONOGRAPH

The purpose of this monograph is to develop a general technique for
analyzing and, in particular, for synthesizing linear time-variable sys-
tems. The emphasis is on techniques for synthesizing feedback control
systems, although the techniques need not be confined to these systems.

The first step in the development is the discussion, in chapter 2, of an
algebra of differential equations that allows for the combination of dif-
ferential equations in a manner not unlike the combination of matrices.
In chapter 3 the algebra.is applied to the analysis of linear systems via
signal flow graph theory. In chapter 4 the algebra is applied to the prob-
lem of synthesizing given weighting functions (or differential equa-
tions) as feedback systems. Chapter 5 is devoted to the producing of
overall system functions. In chapter 6 a criterion for determining the
reducibility of a linear system is developed along with a technique for
reducing the order of a reducible system. Finally, in chapter 7, techniques
for approximating given differential equations are developed. The mono-
graph thus provides a complete technique for sythesizing linear time-
variable systems and provides, to a lesser degree, techniques for the
analysis of these systems.



Chapter 2

AN OPERATOR ALGEBRA FOR
DIFFERENTIAL EQUATIONS

In chapter 1 three representations of linear transmittances were discussed
along with the advantages and disadvantages of each. It was there stated
that the main advantages of the differential equation representation are
the relative ease of manipulation and the straightforward techniques of
the combining of differential equations.

In this chapter the techniques for combining and the rules of manipu-
lation of differential equations are developed in the form of an algebra of
linear transformations.

THE NECESSARY OPERATIONS
Since a linear differential equation of the form

d* n d
> ) le = b ==

ix

w0 J=0 dti 2-1)
is a linear transformation of « into y, the algebra is an algebra of linear
transformations [2]. The transformations (linear differential equations)
that are considered will all have the form of equation (2.1), where some
of the a:(¢) and b;(t) may be zero. In the following development, capital
letters (4, B, C, - - - ) are used to represent differential equations of the
form of equation (2.1). In addition, all initial conditions are assumed to
be zero.

The algebra of differential equations involves three operations:

1. Addition of two differential equations; that is,

A+ B=C. (2.2)

2. Multiplication of a differential equation by a scalar; that is,
Ap() = B, (2.3)
11
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or
pnA4 = C. (2.4

(Clearly, if p(¢) is a constant, B = C.)
3. Multiplication of two differential equations; that is,

BA = C. (2.5)

These operations are indicated in block-diagram form in figure 2.1.
Obviously, in order for the algebra.to be useful, each of the operations
must be defined. In addition, the following useful properties of the alge-
bra will be defined:

1. A unity element.

2, A zero element.,

3. An additive inverse.

4, A multiplicative inverse.

A
+
d r Fdc 5%
B
a. ADDITION OF TWO DIFFERENTIAL
EQUATIONS
X
E 1 prt) A % & 8 %
b. POSTMULTIPLICATION OF A DIFFERENTIAL
EQUATION BY A SCALAR
e pir) | —% &S~ ¢ b
c. PREMULTIPLICATION OF A DIFFERENTIAL
EQUATION BY A SCALAR
X X
o—-1 4 B % c —%

d. MULTIPLICATION OF TWO DIFFERENTIAL
EQUATIONS

Figure 2.1. Operations of transformation algebra.
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MUuLTIPLICATION OF TWwo DIFFERENTIAL EQUATIONS
It is necessary to define multiplication first since it is used in defining
addition.
Any differential equation of the form in equation (2.1) can be divided
into two parts—a differential operator and an integral operator (fig. 2.2).

& | owrr 2 INT ——%

Figure 2.2. Block diagram of differential equation
in terms of the notation of equation (2.1).

The relationships between the variables #, y, and z are, in terms of the
notation of equation (2.1),

a diz
2=j_z(:)b,'(l)-gt7i (2.6)
n d'y B
:.3;; alt) == == 2.7

The multiplication of two differential equations can be represented by
figure 2.3, a. The equations that define the relationships between the

z

o %o, 2] owrr, LA NT, |5

a. PRODUCT OF TWO DIFFERENTIAL EQUATIONS

zZ
&L orr, L] oiFrg L | Nty 2] T, |

b, EQUIVALENT BLOCK DIAGRAM OF (a)

S |owr | ¥ w1 —%

c. EQUIVALENT BLOCK DIAGRAM OF (b)
Figure 2.3. Multiplication of two differential equations



