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Preface to the Series

in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its series
Monographs in Computational Methods. This series was established and led by the late
academician, Feng Kang, the founding director of the Computing Center of the Chinese
Academy of Sciences. The monograph series has provided timely information of the
frontier directions and latest research results in computational mathematics. It has had
great impact on young scientists and the entire research community, and has played a
very important role in the development of computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the
People’s Republic of China in 1998 combined several subjects, such as computational
mathematics, numerical algorithms, information science, and operations research and
optimal control, into a new discipline called Information and Computational Science.
As a result, Science Press also reorganized the editorial board of the monograph series
and changed its name to Series in Information and Computational Science. The first
editorial board meeting was held in Beijing in September 2004, and it discussed the
new objectives, and the directions and contents of the new monograph series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and
systematic expositions of the advances in information and computational science,
encompassing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will
extend this support to the new Series in Information and Computational Science, so that
the new series can equally enhance the scientific development in information and
computational science in this century.

Shi Zhongci
2005.7
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Chapter 1

Introduction

Optimal control problems have been extensively utilized in many aspects of the modern
life such as social, economic, scientific and engineering numerical simulation. Due to the
wide application of these problems, they must be solved successfully with efficient numer-
ical methods. Among these numerical methods, finite element discretization of the state
equation was widely applied though other methods were also used.

Many researchers have made a lot of works on some topics of finite element methods
for optimal control problems. In particular, for optimal control problem governed by lin-
ear elliptic state equations, there were two early papers on the numerical approximation
for linear-quadratic control-constrained problems by Falk [!! and Geveci [?!. More recently,
Arnautu and Neittaanmiki 1! contributed further error estimates to this class of problems.
Moreover, we refer to Casas [ who proves convergence results for optimal control prob-
lems governed by linear elliptic equations with control in the coefficient. Most recently,
Meyer and Rosch have studied the superconvergence property for linear-quadratic optimal
control problem, they also investigated the L™ estimates with standard finite element for this
problem in [5]. Liu and Yan %7 have derived a posteriori error estimates for finite element
approximation of convex optimal control problems and boundary control problems respec-
tively. For optimal control problem governed by linear parabolic state equations, a priori
error estimates of finite element approximation were studied in, for example [8] and [9]. A
posteriori error estimates for this problem were discussed by Liu and Yan [,

Mixed finite element methods were much more important methods for a certain class
of problems which contains the gradient of the state variable in the objective functional.
Thus the accuracy of gradient was important in numerical approximation of the state equa-
tions. When it comes to these problems, mixed finite element methods should be used
with which both the scalar variable and its flux variable can be approximated in the same
accuracy. Although mixed finite element methods were extensively used in engineering nu-
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merical simulations, it has not been fully used in computational optimal control problems
yet. Particularly, there doesn’t seem much work on theoretical analysis of mixed finite ele-
ment approximation of optimal control problem in the literature although there were some
works of the mixed finite element methods for elliptic equation and parabolic equation, for
example, see [11-17].

In numerical analysis, a superconvergent method was one which converges faster than
generally expected. For example in the finite element method approximation to Poisson’s
equation in two dimensions, using piecewise linear elements, the average error in the gradi-
ent was first order. However under certain conditions it was possible to recover the gradient
at certain locations within each element to second order. Superconvergence of finite element
approximations for optimal control problems have been extensive studies for standard finite
element methods and mixed finite element methods. In [18], Meyer and Rosch constructed a
postprocessing projection operator and derived a quadratic superconvergence of the control
by finite element methods. In [19], Liu and Yan considered recovery type superconvergence
and a posteriori error estimates for control problem governed by Stokes equations. Next,
Yan 2% analyzed the superconvergence property of finite element method for an optimal
control problem governed by integral equations. A priori error estimates and superconver-
gence for an optimal control problem of bilinear type were obtained in [21]. Compared
with standard finite element methods, the mixed finite element methods have many advan-
tages. When the objective functional contains gradient of the state variable, we will firstly
choose the mixed finite element methods. In [22], we used the postprocessing projection
operator, which was defined by Meyer and Rosch ['® to prove a quadratic superconvergence
of the control problems by mixed finite element methods. We derived error estimates and
superconvergence of mixed methods for convex optimal control problems in [23].

The finite volume element method was a discretization technique for partial differential
equations. Due to its local conservative property and other attractive properties such as the
robustness with the unstructured meshes, the finite volume element method was widely used
in computational fluid dynamics. In general, two different functional spaces (one for the trial
space and one for the test space) were used in the finite volume element method. Owing
to the two different spaces, the numerical analysis of the finite volume element method was
more difficult than that of the finite element method and finite difference method. Since the
method was proposed, there has been many results in the literature. Early work for the finite
volume element method can be found in [24,25]. In [26], Bank and Rose obtained the result
that the finite volume approximation was comparable with the finite element approximation
in H'-norm. The optimal L?*-error estimate was obtained in [27] under the assumption that
feH . In [28], the authors also obtained the H!-norm and maximum-norm error esti-
mates. In [29], Chatzipantelidis proposed a nonconforming finite volume element method
and obtained the L2-norm and H'-norm error estimates. Recently, Chou and Ye proposed
a discontinuous finite volume element method. Unified error analysis for conforming, non-
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conforming and discontinuous finite volume element method was presented in [30]. High
order finite volume element method can be found in, e.g., [31,32].

Recently, Hinze introduced a variational discretization concept for optimal control prob-
lems in [33]. Its key feature is not to discretize the control but to implicitly utilize the
optimality conditions and the discretization of the state and the co-state for the discretiza-
tion of the control. It can not only save computational cost but also improve the order of
convergence of the control variable. In [34], Hinze and Meyer discussed the variational
discretization methods of Lavrentiev-regularized state constrained elliptic optimal control
problems. The authors studied the variational discretization methods for optimal control
problems governed by convection dominated diffusion equations in [35].

The spectral method employed global polynomials as the trial functions for the dis-
cretization of partial differential equations. It provided very accurate approximations with a
relatively small number of unknowns when the solutions were smooth. Recently, the spec-
tral method has been extended to approximate an unconstrained optimal control problem,
see, for example, [36]. In [37], the flow optimal control was successfully approximated by
the Legendre-Galerkin spectral method, where both the unconstrained and the constrained
cases were discussed. In [38], spectral method was used to approximate state constrained
control problems governed by the first bi-harmonic equation. However, the spectral accu-
racy generally cannot be achieved when the approximated solutions have lower regularities,
and this was typically the case when, for example, there existed the control constraints
in optimal control problems (the so-called constrained optimal control problems). Thus,
the spectral method was not widely used in solving constrained distributed optimal control
problems where the solutions often have singularities at the boundary of constraints even
though all the initial data was smooth. Although there has much work on the finite element
method for numerically solving constrained optimal control problems, and on the mixed
finite element method for the optimal control problems. It seems that there was no much
work on the spectral method for the optimal control problems. Furthermore, the optimality
conditions, which were normally the starting point of spectral approximation, were just par-
tial differential equations systems for unconstrained optimal control problems, while those
for constrained optimal control problems contain variational inequalities. This also arised
new issues in analyzing and solving the systems discretised using the spectral method.

The book consists of nine chapters. In the first chapter, we presented the introduction
of the book. The Chapter 2 gave some preliminaries including Sobolev spaces, the ba-
sic concepts of finite element methods, mixed finite element methods, and optimal control
problems. The Chapter 3 discussed finite element methods for some optimal control prob-
lems, for example, elliptic optimal control problems, parabolic optimal control problems,
and optimal control problems with oscillating coefficients. We considered a priori error
estimates of mixed finite element methods for elliptic optimal control problems, parabolic
optimal control problems, hyperbolic optimal control problems, fourth order optimal con-
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trol problems, and nonlinear optimal control problems in Chapter 4. Next we discussed
a posteriori error estimates of mixed finite element methods for optimal control problems
in Chapter 5 and superconvergence of mixed finite element methods for optimal control
problems in Chapter 6. In Chapter 7, we introduced the finite volume element methods for
optimal control problems. In Chapter 8, we considered the variational discretization meth-
ods for optimal control problems. Finally, we considered the Legendre-Galerkin spectral
methods for optimal control problems in Chapter 9. In this book, Yanping Chen was mainly
responsible for the Chapters 1-5 and Zuliang Lu was responsible for the Chapters 6-9.

The subject of our book was computational mathematics and numerical analysis. The
emphases and selection of the topics reflected our involvement in the field about the past 10
years. In this book, there were many different methods for optimal control problems, includ-
ing finite element methods, mixed finite element methods, finite volume element methods,
Legendre-Galerkin spectral methods, and so on. To our best knowledge, this was among
the first book to introduce many different numerical methods for optimal control problems.
At the same time, illustrations and tables were very clearness and beautiful. In our opin-
ion, the book should be especially suitable for students who undertake research related to
computational issues of optimal control problems.

We would like to thank our collaborators and students for their suggestions and helps.
We also thank the Science Press for their efforts to make the publishing of the book.



Chapter 2

Some preliminaries

In this chapter, the general basic theory of Sobolev spaces, the finite element methods
and optimal control problems will be provided. We introduce some definitions, notations
and a few well-known properties and conclusions. More details can be found in [39-41].

2.1 Sobolev spaces

Let Q be bounded open sets in R? (d = 1,2, or 3) with a Lipschitz boundary 6Q. We
adopt the standard notation W™4(Q) for Sobolev spaces on Q with the norm || - ||wma(q) and
the semi-norm | - |ymaq). We set Wy 9(Q) = {w € W™I(Q) : wlsgo = 0}. We denote
W™2(Q) (W (Q)) by H™(Q) (HE()).

We denote by L*(0, T; W™4(Q2)) the Banach space of all L* integrable functions from
(0, T) into W™4(Q2) with norm [[vl|s,7.wma(q)) = ( fOT ||v||;‘V,,.,,(Q)dt)i for s € [0, c0) and the
standard modification for s = co. Similarly, one define the spaces H'(0, T; W™9(Q)) and
CHO, T; W™4(Q)).

Weset 0 =ty <t <---<ty=T,N is apositive integer, k; = t; — t;_1, i = 1,2,-- -, N,
k= ig{ll% {k;}. Let g' = g(x,1;), we define for 1 < p < oo the discrete time-dependent norms

L

N-I P
gCx, Olllr ety = (Z Kis ||8i||f> ’

i=1-1

where [ = 0 for the control variable u(x, 7) and the state variable y(x,7) and [ = 1 for the
co-state variable p(x, ), with the standard modification for p = co.
We will introduce the following the trace theorem.

Lemma 2.1.1 Given ¢ € H'(Q), where Q c R? is a Lipschitz domain “%, there exists a
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constant C depending only on Q such that

191113 50 < Clltlc 2.1)

In particular,

I8ll200) < Cligllq- (2.2)

Moreover, if g € H %(69), there exists ¢ € H'(Q) such that lsq = g, and

liglhe < Cligll, 4 (2.3)

HE60Q)"
Next we introduce the Friedrichs-Poincaré’s inequality (43!,

Lemma 2.1.2 Assume that Q is a Lipschitz domain, there exists a constant C depending
only on Q such that, for any f € H(Q),

Iz < ClIVAllzg)- (2.4)
Now, we introduce some standard results for mixed finite element methods.

Lemma 2.1.3 Assume that Q c R? is a bounded domain. Given f € L*(Q), then there
exists v € H'(Q) x H'(Q) such that

divw=f, in Q, 2.5)
and

Vlhe < Clifllzg- (2.6)

Proof Let B € R? be a ball containing Q, g be a zero extension of f from Q into the ball
B, and ¢ be the solution of the boundary problem

Ap =g, inB,
¢=0, ondB.

It is known that ¢ satisfies the following a priori estimate

1Pl < Clifllzg)s (2.7

and therefore v = V¢ satisfies (2.5) and (2.6). ]

A usual technique to obtain error estimates for finite element approximations is to work
in a reference element and then change variables to prove results for a general element. Let
us introduce some notations and recall some basic estimates.

Fix a reference 7 € R2. Given a simple T € R?, there exists an invertible map F : ¥ — 1,
F(%) = A% + b, with A € R>? and b € R?. We call h, the diameter of 7 and p, the diameter



2.1 Sobolev spaces 7

of the largest ball inscribed in 7. We will use the regularity assumption on the elements,

namely, many of our estimates will depend on a constant o~ such that
h

~ <o
Pr

It is known that for the matrix norm associated with the Euclidean vector norm, the follow-
ing estimates hold:

h
Al < =,
Pt
and

iy he
AT < =

T

With any ¢ € L*(t) we associate ¢ € L?(#) in the usual way, namely,

B(x) = d(%),

where x = F(X).
Now, we recalling the so-called inverse estimates which are a fundamental tool in finite
element analysis.

Lemma 2.1.4 Given a simplex T there exists a constant C = C(o, k, T') such that, for any
p € P(T),

C
IVpllz2ry < E“PHU(T)- (2.8)

Proof Since P;(T) is a finite dimensional space, all the norms defined on it are equivalent.
In particular, there exists a constant C depending on k and 7" such that

IV ll2ery < Cllplzers 2.9
for any p € Py(T). An easy computation shows that
Vp=A"TVp,

where AT is the transpose matrix of A~!. Therefore, using the bound for [|[A~!|| and together
with (2.9) we have

/ \Vp|2dx
T

- / IA™T9 pPIdetAlds < JIA”| / 19 pPIdetAlds
T T
2 h2 K2

<ot [ ippentiai = 2 [ pPax < ot T [ ipia
Pr JT Pr Jr hy Jr

and the proof is complete. m]
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The following lemmas are very important in deriving a posteriori error estimates.

Lemma 2.1.5 Let 7y, be the average interpolation operator defined in [44]. For m = 0 or
LlI<g<oandVve whaQh,

A 1-
v = Alwmaey < D CRY ™ lyrae). (2.10)

TNT#D

Lemma 2.1.6 Let i), be the standard Lagrange interpolation operator '*'. Then form = 0
orl,1 <g<ooand¥ve W>(QM,

[v = wpvlwmacy < CRE " Wlwzace)- (2.11)

Lemma 2.1.7 Forallve W(Q"), 1 < g < o,

1 1-1
[IVllwoaary < C (hrq”"nwﬂ#(r) + he ql"lw“:m) .

For parabolic problems, let At > 0, N = T/At € Z, and 1" = nAt, n € Z, y" = y"(x) =
Y(x, "), we introduce the following standard L?(Q)-orthogonal projection Q) : U —
Uy, ), which for all ¢ € X satisfies

W' = 0", vi) =0, Y €Uy, (2.12)
and elliptic projection operator R, : W — W,,, which for any ¢ € V satisfies
a(@" = Rug", wn) = (ACx, 1)V(@" = Rug"), Vwi) = 0,V wy, € W @-13)
We have the following approximation properties:

" = Q" ll-s < Ch*™* "y, Yy" e H'(Q), s = 0,1, (2.14)
llg" — Rug"l| < CR2(1¢"|l, V4" € HX(Q). (2.15)

More details can be found in Subsection 4.2.

2.2 Finite element methods for elliptic equations

Over the last decades, the finite element method which was introduced by engineers in
the 1960s, has become the most important numerical method for partial differential equa-
tions, particularly for equations of elliptic and parabolic types. This method is based on
the variational form of the boundary value problem and approximates the exact solution by
a piecewise polynomial function. It is more easily adapted to the geometry of the under-
lying domain than the finite difference method, and for symmetric positive definite elliptic
problems it reduces to a finite linear system with a symmetric positive definite matrix.



