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This book provides an introduction to the major mathematical structures used in physics
today. It covers the concepts and techniques needed for topics such as group theory, Lie
algebras, topology, Hilbert spaces and differential geometry. Important theories of physics
such as classical and quantum mechanics, thermodynamics, and special and general rela-
tivity are also developed in detail, and presented in the appropriate mathematical language.

The book is suitable for advanced undergraduate and beginning graduate students in
mathematical and theoretical physics. It includes numerous exercises and worked examples
to test the reader’s understanding of the various concepts, as well as extending the themes
covered in the main text. The only prerequisites are elementary calculus and linear algebra.
No prior knowledge of group theory, abstract vector spaces or topology is required.

PETER SZEKERES received his Ph.D. from King’s College London in 1964, in the area
of general relativity. He subsequently held research and teaching positions at Cornell
University, King’s College and the University of Adelaide, where he stayed from 1971
till his recent retirement. Currently he is a visiting research fellow at that institution. He is
well known internationally for his research in general relativity and cosmology, and has an
excellent reputation for his teaching and lecturing.



Preface

After some twenty years of teaching different topics in the Department of Mathematical
Physics at the University of Adelaide I conceived the rather foolhardy project of putting
all my undergraduate notes together in one single volume under the title Mathematical
Physics. This undertaking turned out to be considerably more ambitious than I had originally
expected, and it was not until my recent retirement that I found the time to complete it.

Over the years [ have sometimes found myself in the midst of a vigorous and at times
quite acrimonious debate on the difference between theoretical and mathematical physics.
This book is symptomatic of the difference. I believe that mathematical physicists put the
mathematics first, while for theoretical physicists it is the physics which is uppermost. The
latter seek out those areas of mathematics for the use they may be put to, while the former
have a more unified view of the two disciplines. I don’t want to say one is better than the
other — it is simply a different outlook. In the big scheme of things both have their place
but, as this book no doubt demonstrates, my personal preference is to view mathematical
physics as a branch of mathematics.

The classical texts on mathematical physics which I was originally brought up on, such
as Morse and Feshbach [7], Courant and Hilbert [1], and Jeffreys and Jeffreys [6] are es-
sentially books on differential equations and linear algebra. The flavour of the present book
is quite different. It follows much more the lines of Choquet-Bruhat, de Witt-Morette and
Dillard-Bleick [14] and Geroch [3], in which mathematical structures rather than mathemat-
ical analysis is the main thrust. Of these two books, the former is possibly a little daunting as
an introductory undergraduate text, while Geroch’s book, written in the author’s inimitably
delightful lecturing style, has occasional tendencies to overabstraction. I resolved therefore
to write a book which covers the material of these texts, assumes no more mathematical
knowledge than elementary calculus and linear algebra, and demonstrates clearly how theo-
ries of modern physics fit into various mathematical structures. How well I have succeeded
must be left to the reader to judge.

At times I have been caught by surprise at the natural development of ideas in this book.
For example, how is it that quantum mechanics appears before classical mechanics? The
reason is certainly not on historical grounds. In the natural organization of mathematical
ideas, algebraic structures appear before geometrical or topological structures, and linear
structures are evidently simpler than non-linear. From the point of view of mathematical
simplicity quantum mechanics, being a purely linear theory in a quasi-algebraic space
(Hilbert space), is more elementary than classical mechanics, which can be expressed in
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terms of non-linear dynamical systems in differential geometry. Yet, there is something
of a paradox here, for as Niels Bohr remarked: ‘Anyone who is not shocked by quantum
mechanics does not understand it’. Quantum mechanics is not a difficult theory to express
mathematically, but it is almost impossible to make epistomological sense of it. I will not
even attempt to answer these sorts of questions, and the reader must look elsewhere for a
discussion of quantum measurement theory [5].

Every book has its limitations. At some point the author must call it a day, and the
omissions in this book may prove a disappointment to some readers. Some of them are
a disappointment to me. Those wanting to go further might explore the theory of fibre
bundles and gauge theories [2, 8, 13], as the stage is perfectly set for this subject by the end
of the book. To many, the biggest omission may be the lack of any discussion of quantum
field theory. This, however, is an area that seems to have an entirely different flavour to the
rest of physics as its mathematics is difficult if nigh on impossible to make rigorous. Even
quantum mechanics has a “classical’ flavour by comparison. It is such a huge subject that I
felt daunted to even begin it. The reader can only be directed to a number of suitable books
to introduce them to this field [10-14].

Structure of the book

This book is essentially in two parts, modern algebra and geometry (including topology).
The early chapters begin with set theory, group theory and vector spaces, then move to more
advanced topics such as Lie algebras, tensors and exterior algebra. Occasionally ideas from
group representation theory are discussed. If calculus appears in these chapters it is of an
elementary kind. At the end of this algebraic part of the book, there is included a chapter
on special relativity (Chapter 9), as it seems a nice example of much of the algebra that has
gone before while introducing some notions from topology and calculus to be developed in
the remaining chapters. I have treated it as a kind of crossroads: Minkowski space acts as a
link between algebraic and geometric structures, while at the same time it is the first place
where physics and mathematics are seen to interact in a significant way.

In the second part of the book, we discuss structures that are essentially geometrical
in character, but generally have an algebraic component as well. Beginning with topology
(Chapter 10), structures are created that combine both algebra and the concept of continuity.
The first of these is Hilbert space (Chapter 13), which is followed by a chapter on quantum
mechanics. Chapters on measure theory (Chapter 11) and distribution theory (Chapter 12)
precede these two. The final chapters (15-19) deal with differential geometry and examples
of physical theories using manifold theory as their setting — thermodynamics, classical
mechanics, general relativity and cosmology. A flow diagram showing roughly how the
chapters interlink is given below.

Exercises and problems are interspersed throughout the text. The exercises are not de-
signed to be difficult — their aim is either to test the reader’s understanding of a concept
just defined or to complete a proof needing one or two more steps. The problems at ends
of sections are more challenging. Frequently they are in many parts, taking up a thread
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of thought and running with it. This way most closely resembles true research, and is my
preferred way of presenting problems rather than the short one-liners often found in text.
books. Throughout the book, newly defined concepts are written in bold type. If a con-
cept is written in italics, it has been introduced in name only and has yet to be defined

properly.

References

[1] R. Courant and D. Hilbert. Methods of Mathematical Physics, vols 1 and 2. New York,
Interscience, 1953.
[2] T. Frankel. The Geometry of Physics. New York, Cambridge University Press, 1997.
[3] R. Geroch. Mathematical Physics. Chicago, The University of Chicago Press, 1985.
[4] J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point of View. New
York, Springer-Verlag, 1981.
[5] J. M. Jauch. Foundations of Quantum Mechanics. Reading, Mass., Addison-Wesley,
1968.
[6] H. J. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics. Cambridge,
Cambridge University Press, 1946.
[7] P. M. Morse and H. Feshbach. Methods of Theoretical Physics, vols 1 and 2. New York,
McGraw-Hill, 1953.
[8] C. Nash and S. Sen. Topology and Geometry for Physicists. London, Academic Press,
1983.
[9] P. Ramond. Field Theory: A Modern Primer. Reading, Mass., Benjamin/Cummings,
1981.
[10] L. H. Ryder, Quantum Field Theory. Cambridge, Cambridge University Press, 1985.
[11] S. S. Schweber. An Introduction to Relativistic Quantum Field Theory. New York,
Harper and Row, 1961.

xi



Preface

[12] R. E. Streater and A. S. Wightman. PCT, Spin and Statistics, and All That. New York,
W. A. Benjamin, 1964.

[13] A. Trautman. Fibre bundles associated with space-time. Reports on Mathematical
Physics, 1:29-62, 1970.

[14] C. de Witt-Morette, Y. Choquet-Bruhat and M. Dillard-Bleick. 4Analysis, Manifolds
and Physics. Amsterdam, North-Holland, 1977.

Xii



Acknowledgements

There are an enormous number of people I would like to express my gratitude to, but I
will single out just a few of the most significant. Firstly, my father George Szekeres, who
introduced me at an early age to the wonderful world of mathematics and has continued
to challenge me throughout my life with his doubts and criticisms of the way physics
(particularly quantum theory) is structured. My Ph.D. supervisor Felix Pirani was the first to
give me an inkling of the importance of differential geometry in mathematical physics,while
others who had an enormous influence on my education and outlook were Roger Penrose,
Bob Geroch, Brandon Carter, Andrzej Trautman, Ray McLenaghan, George Ellis, Bert
Green, Angas Hurst, Sue Scott, David Wiltshire, David Hartley, Paul Davies, Robin Tucker,
Alan Carey, and Michael Eastwood. Finally, my wife Angela has not only been an endless
source of encouragement and support, but often applied her much valued critical faculties
to my manner of expression. I would also like to pay a special tribute to Patrick Fitzhenry
for his invaluable assistance in preparing diagrams and guiding me through some of the
nightmare that is today’s computer technology.

Xiii



To my mother, Esther



Contents

Preface
Acknowledgements

1 Sets and structures
1.1 Sets and logic
1.2 Subsets, unions and intersections of sets
1.3 Cartesian products and relations
1.4 Mappings
1.5 Infinite sets
1.6 Structures
1.7 Category theory

2 Groups
2.1 Elements of group theory
2.2 Transformation and permutation groups
2.3 Matrix groups
2.4 Homomorphisms and isomorphisms
2.5 Normal subgroups and factor groups
2.6 Group actions
2.7 Symmetry groups

3 Vector spaces
3.1 Rings and fields
3.2 Vector spaces
3.3 Vector space homomorphisms
3.4 Vector subspaces and quotient spaces
3.5 Bases of a vector space
3.6 Summation convention and transformation of bases
3.7 Dual spaces

4 Linear operators and matrices
4.1 Eigenspaces and characteristic equations
4.2 Jordan canonical form

page ix
xiii

1
2
5
7
10
13

17
23

27
27
30
35
40
45
49
52

59
59
60
63
66
72
81
88

98
99
107



Vi

Contents

T T T A TR B SR

10

4.3  Linear ordinary differential equations
4.4  Introduction to group representation theory

Inner product spaces

5.1  Real inner product spaces

5.2 Complex inner product spaces
5.3 Representations of finite groups

Algebras

6.1  Algebras and ideals

6.2  Complex numbers and complex structures
6.3 Quaternions and Clifford algebras

6.4  Grassmann algebras

6.5 Lie algebras and Lie groups

Tensors

7.1  Free vector spaces and tensor spaces
7.2 Multilinear maps and tensors

7.3 Basis representation of tensors

7.4  Operations on tensors

Exterior algebra

8.1  r-Vectors and r-forms

8.2 Basis representation of r-vectors
8.3  Exterior product

8.4  Interior product

8.5  Oriented vector spaces

8.6  The Hodge dual

Special relativity

9.1  Minkowski space-time

9.2 Relativistic kinematics

9.3 Particle dynamics

9.4  Electrodynamics

9.5  Conservation laws and energy—stress tensors

Topology

10.1 Euclidean topology

10.2  General topological spaces
10.3  Metric spaces

10.4 Induced topologies

10.5 Hausdorff spaces

10.6 Compact spaces

116
120

126
126
133
141

149
149
152
157
160
166

178
178
186
193
198

204
204
206
208
213
215
220

228
228
235
239
244
251

255
255
257
264
265
269
271



Contents

B s

11

12

13

14

15

16

10.7 Connected spaces
10.8 Topological groups
10.9 Topological vector spaces

Measure theory and integration

11.1 Measurable spaces and functions
11.2 Measure spaces

11.3 Lebesgue integration

Distributions

12.1 Test functions and distributions
12.2  Operations on distributions
12.3  Fourier transforms

12.4 Green’s functions

Hilbert spaces

13.1 Definitions and examples
13.2 Expansion theorems

13.3 Linear functionals

13.4 Bounded linear operators
13.5 Spectral theory

13.6 Unbounded operators

Quantum mechanics

14.1 Basic concepts

14.2 Quantum dynamics

14.3 Symmetry transformations
14.4 Quantum statistical mechanics

Differential geometry

15.1 Differentiable manifolds

15.2 Differentiable maps and curves

15.3 Tangent, cotangent and tensor spaces
15.4 Tangent map and submanifolds

15.5 Commutators, flows and Lie derivatives
15.6 Distributions and Frobenius theorem

Differentiable forms

16.1 Differential forms and exterior derivative
16.2 Properties of exterior derivative

16.3 Frobenius theorem: dual form

16.4 Thermodynamics

16.5 Classical mechanics

273
276
279

287
287
292
301

308
309
314
320
323

330
330
335
341
344
351
357

366
366
379
387
397

410
411
415
417
426
432
440

447
447
451
454
457
464

vii



viii

Contents

17

18

19

Integration on manifolds

17.1 Partitions of unity

17.2 Integration of n-forms

17.3  Stokes’ theorem

17.4 Homology and cohomology
17.5 The Poincaré lemma

Connections and curvature

18.1 Linear connections and geodesics
18.2  Covariant derivative of tensor fields
18.3 Curvature and torsion

18.4 Pseudo-Riemannian manifolds

18.5 Equation of geodesic deviation
18.6 The Riemann tensor and its symmetries
18.7 Cartan formalism

18.8 General relativity

18.9 Cosmology

18.10 Variation principles in space-time

Lie groups and Lie algebras

19.1 Lie groups

19.2 The exponential map

19.3 Lie subgroups

19.4  Lie groups of transformations
19.5  Groups of isometries

Bibliography
Index

481
482
484
486
493
500

506
506
510
512
516
522
524
527
534
548
553

559
559
564
569
572
578

587
589



Sets and structures

The object of mathematical physics is to describe the physical world in purely mathemat-
ical terms. Although it had its origins in the science of ancient Greece, with the work of
Archimedes, Euclid and Aristotle, it was not until the discoveries of Galileo and Newton that
mathematical physics as we know it today had its true beginnings. Newton’s discovery of
the calculus and its application to physics was undoubtedly the defining moment. This was
built upon by generations of brilliant mathematicians such as Euler, Lagrange, Hamilton
and Gauss, who essentially formulated physical law in terms of differential equations. With
the advent of new and unintuitive theories such as relativity and quantum mechanics in the
twentieth century, the reliance on mathematics moved to increasingly recondite areas such
as abstract algebra, topology, functional analysis and differential geometry. Even classical
areas such as the mechanics of Lagrange and Hamilton, as well as classical thermody-
namics, can be lifted almost directly into the language of modern differential geometry.
Today, the emphasis is often more structural than analytical, and it is commonly believed
that finding the right mathematical structure is the most important aspect of any physical
theory. Analysis, or the consequences of theories, still has a part to play in mathematical
physics — indeed, most research is of this nature — but it is possibly less fundamental in the
total overview of the subject.

When we consider the significant achievements of mathematical physics, one cannot help
but wonder why the workings of the universe are expressable at all by rigid mathematical
‘laws’. Furthermore, how is it that purely human constructs, in the form of deep and subtle
mathematical structures refined over centuries of thought, have any relevance at all? The
nineteenth century view of a clockwork universe regulated deterministically by differential
equations seems now to have been banished for ever, both through the fundamental appear-
ance of probabilities in quantum mechanics and the indeterminism associated with chaotic
systems. These two aspects of physical law, the deterministic and indeterministic, seem to
interplay in some astonishing ways, the impact of which has yet to be fully appreciated. It is
this interplay, however, that almost certainly gives our world its richness and variety. Some
of these questions and challenges may be fundamentally unanswerable, but the fact remains
that mathematics seems to be the correct path to understanding the physical world.

The aim of this book is to present the basic mathematical structures used in our subject,
and to express some of the most important theories of physics in their appropriate mathe-
matical setting. It is a book designed chiefly for students of physics who have the need for a
more rigorous mathematical education. A basic knowledge of calculus and linear algebra,
including matrix theory, is assumed throughout, but little else. While different students will
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Sets and structures

of course come to this book with different levels of mathematical sophistication, the reader
should be able to determine exactly what they can skip and where they must take pause.
Mathematicians, for example, may be interested only in the later chapters, where various
theories of physics are expressed in mathematical terms. These theories will not, however,
be developed at great length, and their consequences will only be dealt with by way of a
few examples.

The most fundamental notion in mathematics is that of a set, or ‘collection of objects’.
The subject of this chapter is set theory — the branch of mathematics devoted to the study
of sets as abstract objects in their own right. It turns out that every mathematical structure
consists of a collection of sets together with some defining relations. Furthermore, as we
shall see in Section 1.3, such relations are themselves defined in terms of sets. It is thus a
commonly adopted viewpoint that all of mathematics reduces essentially to statements in
set theory, and this is the motivation for starting with a chapter on such a basic topic.

The idea of sets as collections of objects has a non-rigorous, or ‘naive’ quality, although it
is the form in which most students are introduced to the subject [1-4]. Early in the twentieth
century, it was discovered by Bertrand Russell that there are inherent self-contradictions
and paradoxes in overly simple versions of set theory. Although of concern to logicians and
those mathematicians demanding a totally rigorous basis to their subject, these paradoxes
usually involve inordinately large self-referential sets — not the sort of constructs likely to
occur in physical contexts. Thus, while special models of set theory have been designed
to avoid contradictions, they generally have somewhat artificial attributes and naive set
theory should suffice for our purposes. The reader’s attention should be drawn, however,
to the remarks at the end of Section 1.5 concerning the possible relevance of fundamental
problems of set theory to physics. These problems, while not of overwhelming concern,
may at least provide some food for thought.

While a basic familiarity with set theory will be assumed throughout this book, it never-
theless seems worthwhile to go over the fundamentals, if only for the sake of completeness
and to establish a few conventions. Many physicists do not have a good grounding in set
theory, and should find this chapter a useful exercise in developing the kind of rigorous
thinking needed for mathematical physics. For mathematicians this is all bread and butter,
and if you feel the material of this chapter is well-worn ground, please feel free to pass on
quickly.

Sets and logic

There are essentially two ways in which we can think of a set S. Firstly, it can be regarded

as a collection of mathematical objects a, b, . .., called constants, written
S={a. b;:::}
The constants a, b, ... may themselves be sets and, indeed, some formulations of set theory

require them to be sets. Physicists in general prefer to avoid this formal nicety, and find it
much more natural to allow for ‘atomic’ objects, as it is hard to think of quantities such as
temperature or velocity as being ‘sets’. However, to think of sets as consisting of lists of



