A Course in Modern Mathematical Physics Groups. Hilbert Space and Differential Geometry 现代数学物理教程 光界图 * 4 版公司 www.wpcbj.com.cn # A Course in Modern Mathematical Physics Groups, Hilbert Space and Differential Geometry # **Peter Szekeres** Formerly of University of Adelaide ## 图书在版编目 (CIP) 数据 现代数学物理教程 = A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry: 英文/(澳) 斯泽克雷斯 (Szekeres, P.) 著.—影印本.—北京: 世界图书出版公司北京公司, 2011.5 ISBN 978 - 7 - 5100 - 3509 - 8 I. ①现··· Ⅱ. ①斯··· Ⅲ. ①数学物理方法—教材 —英文 Ⅳ. ①0411. 1 中国版本图书馆 CIP 数据核字 (2011) 第 074535 号 书 名: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Dif- ferential Geometry 作 者: Peter Szekeres 中 译 名: 现代数学物理教程 责任编辑: 高蓉 刘慧 出版者: 世界图书出版公司北京公司 印刷者: 三河市国英印务有限公司印刷 7 发 行: 世界图书出版公司北京公司(北京朝内大街137号 100010) 联系电话: 010-64021602, 010-64015659 电子信箱: kjb@ wpcbj. com. cn 开 本: 16 开 印 张: 38.75 版 次: 2011年06月 版权登记: 图字: 01-2011-1404 书 号: 978-7-5100-3509-8/0・878 定 价: 99.00元 A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry, 1st ed. (978-0-521-82960-1) by Peter Szekeres first published by Cambridge University Press 2004 All rights reserved. This reprint edition for the People's Republic of China is published by arrangement with the Press Syndicate of the University of Cambridge, Cambridge, United Kingdom. © Cambridge University Press & Beijing World Publishing Corporation 2011 This book is in copyright. No reproduction of any part may take place without the written permission of Cambridge University Press or Beijing World Publishing Corporation. This edition is for sale in the mainland of China only, excluding Hong Kong SAR, Macao SAR and Taiwan, and may not be bought for export therefrom. 此版本仅限中华人民共和国境内销售,不包括香港、澳门特别行政区及中国台湾。不得出口。 This book provides an introduction to the major mathematical structures used in physics today. It covers the concepts and techniques needed for topics such as group theory, Lie algebras, topology, Hilbert spaces and differential geometry. Important theories of physics such as classical and quantum mechanics, thermodynamics, and special and general relativity are also developed in detail, and presented in the appropriate mathematical language. The book is suitable for advanced undergraduate and beginning graduate students in mathematical and theoretical physics. It includes numerous exercises and worked examples to test the reader's understanding of the various concepts, as well as extending the themes covered in the main text. The only prerequisites are elementary calculus and linear algebra. No prior knowledge of group theory, abstract vector spaces or topology is required. PETER SZEKERES received his Ph.D. from King's College London in 1964, in the area of general relativity. He subsequently held research and teaching positions at Cornell University, King's College and the University of Adelaide, where he stayed from 1971 till his recent retirement. Currently he is a visiting research fellow at that institution. He is well known internationally for his research in general relativity and cosmology, and has an excellent reputation for his teaching and lecturing. # **Preface** After some twenty years of teaching different topics in the Department of Mathematical Physics at the University of Adelaide I conceived the rather foolhardy project of putting all my undergraduate notes together in one single volume under the title *Mathematical Physics*. This undertaking turned out to be considerably more ambitious than I had originally expected, and it was not until my recent retirement that I found the time to complete it. Over the years I have sometimes found myself in the midst of a vigorous and at times quite acrimonious debate on the difference between theoretical and mathematical physics. This book is symptomatic of the difference. I believe that mathematical physicists put the mathematics first, while for theoretical physicists it is the physics which is uppermost. The latter seek out those areas of mathematics for the use they may be put to, while the former have a more unified view of the two disciplines. I don't want to say one is better than the other – it is simply a different outlook. In the big scheme of things both have their place but, as this book no doubt demonstrates, my personal preference is to view mathematical physics as a branch of mathematics. The classical texts on mathematical physics which I was originally brought up on, such as Morse and Feshbach [7], Courant and Hilbert [1], and Jeffreys and Jeffreys [6] are essentially books on differential equations and linear algebra. The flavour of the present book is quite different. It follows much more the lines of Choquet-Bruhat, de Witt-Morette and Dillard-Bleick [14] and Geroch [3], in which mathematical structures rather than mathematical analysis is the main thrust. Of these two books, the former is possibly a little daunting as an introductory undergraduate text, while Geroch's book, written in the author's inimitably delightful lecturing style, has occasional tendencies to overabstraction. I resolved therefore to write a book which covers the material of these texts, assumes no more mathematical knowledge than elementary calculus and linear algebra, and demonstrates clearly how theories of modern physics fit into various mathematical structures. How well I have succeeded must be left to the reader to judge. At times I have been caught by surprise at the natural development of ideas in this book. For example, how is it that quantum mechanics appears before classical mechanics? The reason is certainly not on historical grounds. In the natural organization of mathematical ideas, algebraic structures appear before geometrical or topological structures, and linear structures are evidently simpler than non-linear. From the point of view of mathematical simplicity quantum mechanics, being a purely linear theory in a quasi-algebraic space (Hilbert space), is more elementary than classical mechanics, which can be expressed in terms of non-linear dynamical systems in differential geometry. Yet, there is something of a paradox here, for as Niels Bohr remarked: 'Anyone who is not shocked by quantum mechanics does not understand it'. Quantum mechanics is not a difficult theory to express mathematically, but it is almost impossible to make epistomological sense of it. I will not even attempt to answer these sorts of questions, and the reader must look elsewhere for a discussion of quantum measurement theory [5]. Every book has its limitations. At some point the author must call it a day, and the omissions in this book may prove a disappointment to some readers. Some of them are a disappointment to me. Those wanting to go further might explore the theory of fibre bundles and gauge theories [2, 8, 13], as the stage is perfectly set for this subject by the end of the book. To many, the biggest omission may be the lack of any discussion of quantum field theory. This, however, is an area that seems to have an entirely different flavour to the rest of physics as its mathematics is difficult if nigh on impossible to make rigorous. Even quantum mechanics has a 'classical' flavour by comparison. It is such a huge subject that I felt daunted to even begin it. The reader can only be directed to a number of suitable books to introduce them to this field [10–14]. ## Structure of the book This book is essentially in two parts, modern algebra and geometry (including topology). The early chapters begin with set theory, group theory and vector spaces, then move to more advanced topics such as Lie algebras, tensors and exterior algebra. Occasionally ideas from group representation theory are discussed. If calculus appears in these chapters it is of an elementary kind. At the end of this algebraic part of the book, there is included a chapter on special relativity (Chapter 9), as it seems a nice example of much of the algebra that has gone before while introducing some notions from topology and calculus to be developed in the remaining chapters. I have treated it as a kind of crossroads: Minkowski space acts as a link between algebraic and geometric structures, while at the same time it is the first place where physics and mathematics are seen to interact in a significant way. In the second part of the book, we discuss structures that are essentially geometrical in character, but generally have an algebraic component as well. Beginning with topology (Chapter 10), structures are created that combine both algebra and the concept of continuity. The first of these is Hilbert space (Chapter 13), which is followed by a chapter on quantum mechanics. Chapters on measure theory (Chapter 11) and distribution theory (Chapter 12) precede these two. The final chapters (15–19) deal with differential geometry and examples of physical theories using manifold theory as their setting – thermodynamics, classical mechanics, general relativity and cosmology. A flow diagram showing roughly how the chapters interlink is given below. Exercises and problems are interspersed throughout the text. The exercises are not designed to be difficult – their aim is either to test the reader's understanding of a concept just defined or to complete a proof needing one or two more steps. The problems at ends of sections are more challenging. Frequently they are in many parts, taking up a thread of thought and running with it. This way most closely resembles true research, and is my preferred way of presenting problems rather than the short one-liners often found in text books. Throughout the book, newly defined concepts are written in bold type. If a concept is written in italics, it has been introduced in name only and has yet to be defined properly. ### References - [1] R. Courant and D. Hilbert. *Methods of Mathematical Physics*, vols 1 and 2. New York, Interscience, 1953. - [2] T. Frankel. The Geometry of Physics. New York, Cambridge University Press, 1997. - [3] R. Geroch. Mathematical Physics. Chicago, The University of Chicago Press, 1985. - [4] J. Glimm and A. Jaffe. *Quantum Physics: A Functional Integral Point of View*. New York, Springer-Verlag, 1981. - [5] J. M. Jauch. Foundations of Quantum Mechanics. Reading, Mass., Addison-Wesley, 1968. - [6] H. J. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics. Cambridge, Cambridge University Press, 1946. - [7] P. M. Morse and H. Feshbach. Methods of Theoretical Physics, vols 1 and 2. New York, McGraw-Hill, 1953. - [8] C. Nash and S. Sen. Topology and Geometry for Physicists. London, Academic Press, 1983. - [9] P. Ramond. Field Theory: A Modern Primer. Reading, Mass., Benjamin/Cummings, 1981. - [10] L. H. Ryder, Quantum Field Theory. Cambridge, Cambridge University Press, 1985. - [11] S. S. Schweber. An Introduction to Relativistic Quantum Field Theory. New York, Harper and Row, 1961. - [12] R. F. Streater and A. S. Wightman. PCT, Spin and Statistics, and All That. New York, W. A. Benjamin, 1964. - [13] A. Trautman. Fibre bundles associated with space-time. *Reports on Mathematical Physics*, 1:29–62, 1970. - [14] C. de Witt-Morette, Y. Choquet-Bruhat and M. Dillard-Bleick. *Analysis, Manifolds and Physics*. Amsterdam, North-Holland, 1977. # **Acknowledgements** There are an enormous number of people I would like to express my gratitude to, but I will single out just a few of the most significant. Firstly, my father George Szekeres, who introduced me at an early age to the wonderful world of mathematics and has continued to challenge me throughout my life with his doubts and criticisms of the way physics (particularly quantum theory) is structured. My Ph.D. supervisor Felix Pirani was the first to give me an inkling of the importance of differential geometry in mathematical physics, while others who had an enormous influence on my education and outlook were Roger Penrose, Bob Geroch, Brandon Carter, Andrzej Trautman, Ray McLenaghan, George Ellis, Bert Green, Angas Hurst, Sue Scott, David Wiltshire, David Hartley, Paul Davies, Robin Tucker, Alan Carey, and Michael Eastwood. Finally, my wife Angela has not only been an endless source of encouragement and support, but often applied her much valued critical faculties to my manner of expression. I would also like to pay a special tribute to Patrick Fitzhenry for his invaluable assistance in preparing diagrams and guiding me through some of the nightmare that is today's computer technology. To my mother, Esther | | Prej | face | page ix | |---|------|--|---------| | | Ack | nowledgements | xiii | | 1 | Sets | 1 | | | | 1.1 | Sets and logic | 2 | | | 1.2 | Subsets, unions and intersections of sets | 5 | | | 1.3 | Cartesian products and relations | 7 | | | 1.4 | Mappings | 10 | | | 15 | Infinite sets | 13 | | | 1.6 | Structures | 17 | | | 1.7 | Category theory | 23 | | 2 | Gro | 27 | | | | 2.1 | Elements of group theory | 27 | | | 2.2 | Transformation and permutation groups | 30 | | | 2.3 | Matrix groups | 35 | | | 2.4 | Homomorphisms and isomorphisms | 40 | | | 2.5 | Normal subgroups and factor groups | 45 | | | 2.6 | Group actions | 49 | | | 2.7 | Symmetry groups | 52 | | 3 | Vec | 59 | | | | 3.1 | Rings and fields | 59 | | | 3.2 | Vector spaces | 60 | | | 3.3 | Vector space homomorphisms | 63 | | | 3.4 | Vector subspaces and quotient spaces | 66 | | | 3.5 | Bases of a vector space | 72 | | | 3.6 | Summation convention and transformation of bases | 81 | | | 3.7 | Dual spaces | 88 | | 4 | Line | 98 | | | | 4.1 | Eigenspaces and characteristic equations | 99 | | | 4.2 | Jordan canonical form | 107 | | | 4.3 | Linear ordinary differential equations | 116 | | | |----|------------------|---|------------|--|--| | | 4.4 | Introduction to group representation theory | 120 | | | | | | | | | | | 5 | Inner | 126 | | | | | | 5.1 | Real inner product spaces | 126 | | | | | 5.2 | Complex inner product spaces | 133 | | | | | 5.3 | Representations of finite groups | 141 | | | | _ | | | 140 | | | | 6 | Algeb | 149 | | | | | | 6.1
6.2 | Algebras and ideals | 149 | | | | | 6.3 | Complex numbers and complex structures | 152 | | | | | 6.4 | Quaternions and Clifford algebras | 157
160 | | | | | 6.5 | Grassmann algebras Lie algebras and Lie groups | 166 | | | | | 0.5 | Lie algebras and Lie groups | 100 | | | | 7 | Tenso | 178 | | | | | | 7.1 | Free vector spaces and tensor spaces | 178 | | | | | 7.2 | Multilinear maps and tensors | 186 | | | | | 7.3 | Basis representation of tensors | 193 | | | | | 7.4 | Operations on tensors | 198 | | | | 8 | Exterior algebra | | | | | | o | 8.1 | 204 204 | | | | | | 8.2 | r-Vectors and r-forms Basis representation of r-vectors | 206 | | | | | 8.3 | Exterior product | 208 | | | | | 8.4 | Interior product | 213 | | | | | 8.5 | Oriented vector spaces | 215 | | | | | 8.6 | The Hodge dual | 220 | | | | _ | | | | | | | 9 | - | ial relativity | 228 | | | | | 9.1 | Minkowski space-time | 228 | | | | | 9.2 | Relativistic kinematics | 235 | | | | | 9.3 | Particle dynamics | 239 | | | | | 9.4 | Electrodynamics | 244 | | | | | 9.5 | Conservation laws and energy-stress tensors | 251 | | | | 10 | Topology | | 255 | | | | | 10.1 | Euclidean topology | 255 | | | | | 10.2 | General topological spaces | 257 | | | | | 10.3 | Metric spaces | 264 | | | | | 10.4 | Induced topologies | 265 | | | | | 10.5 | Hausdorff spaces | 269 | | | | | 10.6 | Compact spaces | 271 | | | | | 10.7 | Connected spaces | 273 | |----|-------------------------|--|-----| | | 10.8 | Topological groups | 276 | | | 10.9 | Topological vector spaces | 279 | | 11 | Meas | 287 | | | | 11.1 | sure theory and integration Measurable spaces and functions | 287 | | | 11.2 | Measure spaces | 292 | | | 11.3 | Lebesgue integration | 301 | | 12 | Dietr | ibutions | 308 | | 12 | 12.1 | Test functions and distributions | 309 | | | 12.1 | Operations on distributions | 314 | | | 12.2 | Fourier transforms | 320 | | | | Green's functions | 323 | | | 12.4 | Green's functions | 323 | | 13 | Hilbe | 330 | | | | 13.1 | Definitions and examples | 330 | | | | Expansion theorems | 335 | | | 13.3 | Linear functionals | 341 | | | 13.4 | Bounded linear operators | 344 | | | 13.5 | Spectral theory | 351 | | | 13.6 | Unbounded operators | 357 | | 14 | Quantum mechanics | | 366 | | | 14.1 | Basic concepts | 366 | | | 14.2 | Quantum dynamics | 379 | | | 14.3 | Symmetry transformations | 387 | | | 14.4 | Quantum statistical mechanics | 397 | | 15 | Differential geometry 4 | | | | | 15.1 | Differentiable manifolds | 411 | | | 15.2 | Differentiable maps and curves | 415 | | | 15.3 | Tangent, cotangent and tensor spaces | 417 | | | 15.4 | Tangent map and submanifolds | 426 | | | 15.5 | Commutators, flows and Lie derivatives | 432 | | | 15.6 | Distributions and Frobenius theorem | 440 | | 16 | Diffe | 447 | | | | 16.1 | Differential forms and exterior derivative | 447 | | | 16.2 | Properties of exterior derivative | 451 | | | 16.3 | - | 454 | | | 16.4 | Thermodynamics | 457 | | | 16.5 | Classical mechanics | 464 | | 17 | Integ | gration on manifolds | 481 | |----|-----------------------------|--|-----| | | 17.1 | Partitions of unity | 482 | | | 17.2 | Integration of <i>n</i> -forms | 484 | | | 17.3 | Stokes' theorem | 486 | | | 17.4 | Homology and cohomology | 493 | | | 17.5 | The Poincaré lemma | 500 | | 18 | Conn | 506 | | | | 18.1 | Linear connections and geodesics | 506 | | | 18.2 | Covariant derivative of tensor fields | 510 | | | 18.3 | Curvature and torsion | 512 | | | 18.4 | Pseudo-Riemannian manifolds | 516 | | | 18.5 | Equation of geodesic deviation | 522 | | | 18.6 | The Riemann tensor and its symmetries | 524 | | | 18.7 | Cartan formalism | 527 | | | 18.8 | General relativity | 534 | | | 18.9 | Cosmology | 548 | | | 18.10 | 0 Variation principles in space-time | 553 | | 10 | T ! | annous and I is also have | 550 | | 19 | Lie groups and Lie algebras | | 559 | | | 19.1 | Lie groups | 559 | | | 19.2 | The state of s | 564 | | | 19.3 | 8 1 | 569 | | | 19.4 | | 572 | | | 19.5 | Groups of isometries | 578 | | | Bibli | iography | 587 | | | Index | | 589 | # 1 Sets and structures The object of mathematical physics is to describe the physical world in purely mathematical terms. Although it had its origins in the science of ancient Greece, with the work of Archimedes, Euclid and Aristotle, it was not until the discoveries of Galileo and Newton that mathematical physics as we know it today had its true beginnings. Newton's discovery of the calculus and its application to physics was undoubtedly the defining moment. This was built upon by generations of brilliant mathematicians such as Euler, Lagrange, Hamilton and Gauss, who essentially formulated physical law in terms of differential equations. With the advent of new and unintuitive theories such as relativity and quantum mechanics in the twentieth century, the reliance on mathematics moved to increasingly recondite areas such as abstract algebra, topology, functional analysis and differential geometry. Even classical areas such as the mechanics of Lagrange and Hamilton, as well as classical thermodynamics, can be lifted almost directly into the language of modern differential geometry. Today, the emphasis is often more structural than analytical, and it is commonly believed that finding the right mathematical structure is the most important aspect of any physical theory. Analysis, or the consequences of theories, still has a part to play in mathematical physics – indeed, most research is of this nature – but it is possibly less fundamental in the total overview of the subject. When we consider the significant achievements of mathematical physics, one cannot help but wonder why the workings of the universe are expressable at all by rigid mathematical 'laws'. Furthermore, how is it that purely human constructs, in the form of deep and subtle mathematical structures refined over centuries of thought, have any relevance at all? The nineteenth century view of a clockwork universe regulated deterministically by differential equations seems now to have been banished for ever, both through the fundamental appearance of probabilities in quantum mechanics and the indeterminism associated with chaotic systems. These two aspects of physical law, the deterministic and indeterministic, seem to interplay in some astonishing ways, the impact of which has yet to be fully appreciated. It is this interplay, however, that almost certainly gives our world its richness and variety. Some of these questions and challenges may be fundamentally unanswerable, but the fact remains that mathematics seems to be the correct path to understanding the physical world. The aim of this book is to present the basic mathematical structures used in our subject, and to express some of the most important theories of physics in their appropriate mathematical setting. It is a book designed chiefly for students of physics who have the need for a more rigorous mathematical education. A basic knowledge of calculus and linear algebra, including matrix theory, is assumed throughout, but little else. While different students will of course come to this book with different levels of mathematical sophistication, the reader should be able to determine exactly what they can skip and where they must take pause. Mathematicians, for example, may be interested only in the later chapters, where various theories of physics are expressed in mathematical terms. These theories will not, however, be developed at great length, and their consequences will only be dealt with by way of a few examples. The most fundamental notion in mathematics is that of a *set*, or 'collection of objects'. The subject of this chapter is *set theory* – the branch of mathematics devoted to the study of sets as abstract objects in their own right. It turns out that every mathematical structure consists of a collection of sets together with some *defining relations*. Furthermore, as we shall see in Section 1.3, such relations are themselves defined in terms of sets. It is thus a commonly adopted viewpoint that all of mathematics reduces essentially to statements in set theory, and this is the motivation for starting with a chapter on such a basic topic. The idea of sets as collections of objects has a non-rigorous, or 'naive' quality, although it is the form in which most students are introduced to the subject [1–4]. Early in the twentieth century, it was discovered by Bertrand Russell that there are inherent self-contradictions and paradoxes in overly simple versions of set theory. Although of concern to logicians and those mathematicians demanding a totally rigorous basis to their subject, these paradoxes usually involve inordinately large self-referential sets – not the sort of constructs likely to occur in physical contexts. Thus, while special models of set theory have been designed to avoid contradictions, they generally have somewhat artificial attributes and naive set theory should suffice for our purposes. The reader's attention should be drawn, however, to the remarks at the end of Section 1.5 concerning the possible relevance of fundamental problems of set theory to physics. These problems, while not of overwhelming concern, may at least provide some food for thought. While a basic familiarity with set theory will be assumed throughout this book, it nevertheless seems worthwhile to go over the fundamentals, if only for the sake of completeness and to establish a few conventions. Many physicists do not have a good grounding in set theory, and should find this chapter a useful exercise in developing the kind of rigorous thinking needed for mathematical physics. For mathematicians this is all bread and butter, and if you feel the material of this chapter is well-worn ground, please feel free to pass on quickly. # 1.1 Sets and logic There are essentially two ways in which we can think of a set S. Firstly, it can be regarded as a collection of mathematical objects a, b, \ldots , called **constants**, written $$S = \{a, b, \dots\}.$$ The constants a, b, \ldots may themselves be sets and, indeed, some formulations of set theory require them to be sets. Physicists in general prefer to avoid this formal nicety, and find it much more natural to allow for 'atomic' objects, as it is hard to think of quantities such as temperature or velocity as being 'sets'. However, to think of sets as consisting of lists of