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Preface

Ample evidence now exists that complex biological systems can only be progressively under-
stood with the aid of mathematical models. Mathematical modeling requires an understanding of
several disciplines: biology, computing, kinetics, mathematics, and statistics. While many texts cover
these topics individually, previous textbooks do not integrate this information to enable an investi-
gator without a strong mathematical background to apply modeling for hypothesis testing. This
textbook is an attempt to meet this need. References are made to material covered in other textbooks.

The approach described in this textbook is often called the “SAAM (simulation, analysis, and
modeling) approach” or “Berman approach” to mathematical modeling. Briefly, it involves the
process of mathematical modeling on a computer as an aid to understanding biological system
behavior [1]. This approach has guided the development of the WinSAAM (Windows SAAM)
modeling software. The SAAM program and its conversational version, CONSAM, have been under
development at the Laboratory of Experimental and Computational Biology, National Institutes of
Health, since the late 1950s. WinSAAM evolved from the SAAM and CONSAM programs. It was
designed for use by biologists. For example, compartmental models to describe experiments per-
formed on biological systems can be set up and changed by simply specifying differential equation
parameters and providing the initial conditions for the experiment. Models can also be solved by
entering explicit equations. Parameter values can be changed during a solution to simulate variable
experimental conditions. Data can be fitted by ordinary, generalized, or weighted least-squares
regression techniques. Plotting and statistical measures of fit make it easy to compare and evaluate
mathematical or compartmental models. WinSAAM incorporates Windows features for interappli-
cation communication, making interacting through WinSAAM with other software as simple as
SelectlCopylPaste.

xiii



xiv Preface

Section I is a general introduction to the field of modeling biological systems. Section II
describes modeling software and compares several packages. Section III explains the tools for
modeling and illustrates them using examples. Section IV covers topics related to the design of
experimental studies and the steps involved in modeling biological data. Finally, Section V describes
how to evaluate and use published models.

The book is designed for students (all sections), experimentalists who have data to analyze
(Sections II-IV) or who are planning kinetic studies (Sections IV and V), and for modelers as a
resource (Section III). Models contain a plethora of information about a system, and the book is also
designed for those who wish to access information inherent in models for designing experiments, for
assessing the state of knowledge in a particular area, or for teaching complex biophysical principles
(Section V). There is some repetition in the book as the description of topics focuses more on
theoretical aspects in some sections and practical approaches in others.

The principles of developing models to interpret kinetic data apply across disciplines, and
examples in the text are chosen from many fields, including chemistry, biochemistry, physiology,
pharmacology, animal science, medicine, and agriculture. Modeling is part art and part science and
is best understood by a hands-on approach. The CD supplied with this book includes the latest version
of WinSAAM as well as the examples that have been used in the text. Readers are encouraged to use
and adapt the models for their own areas of interest and to incorporate modeling as a routine tool for
data analysis and in experimental design.

We acknowledge the contributions made by our families and colleagues during the writing of
this book, and specifically Dr. Janet Novotny for proofing some of the chapters.

Without data models can't exist . . .
Without models data can’t be used . . .

R. Boston, 1998

Reference
1. Berman M. (1963). The formulation and testing of models. Ann. N.Y. Acad. Sci. 108, 182—194.
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1
WHAT IS MODELING ?

This chapter will provide an introduction to modeling by defining terms and
discussing modeling philosophy. Modeling straddles the fields of biology and
mathematics. Therefore, it could be termed ‘Biomodeling’. However, it differs
from, but is related to, the fields of Biomathematics, Biostatistics, and
Bioengineering where mathematics, statistics, and engineering are applied to the
study of biological systems. Biomodeling involves the use of these scientific tools, a
knowledge of biology, intuition, imagination, and creativity to answer the question,
what biological process could explain these data? Modeling is therefore part art and
part science. The approaches, concepts, and tools can be taught to some extent, but
the art of modeling can only be acquired through practice and experience.

I. Definitions

Models are simplified representations of systems. They can be physical such as
scale models of airplanes, or abstract such as mathematical models. Mathematical
models are used widely in the fields of engineering, physics, economics, business,
and meteorology where models are routinely used in weather prediction. Models are
useful for studying complex systems where many processes occur simultaneously.
In the case of weather forecasting, such processes might include temperature
changes, precipitation patterns and expected movement of high and low pressure
systems. The processes and their interactions can be represented mathematically by
a set of equations (or model). Then, by solving the equations simultaneously, the
solution of the model will mimic the behavior of the system (e.g., the path of a
hurricane). As evident from this example, models are developed because it may not
be possible, or it may be too costly, to probe the real system. Mathematical models
therefore predict the response or behavior of a system. They can be also be used to
predict the response of a system prior to an experiment on the actual system.

Models are used in all fields of biology. Specific examples are: 1) to calculate
nutrient intake for optimal growth, 2) to represent blood circulation, 3) to predict the
pharmacological response to a drug, 4) to determine the rate of uptake of
compounds by cells, and 5) to calculate enzyme kinetics.

Modeling is the process of developing a model or set of equations to
simultaneously represent the structure and behavior of a system. Modeling
biological systems differs fundamentally from modeling physical systems because
the structure of physical systems is usually known, whereas, the structure of
biological systems is generally not known. Models of biological systems are based
on observations of the system (Fig 1.1). This process of determining the structure of
a system based on its behavior is called the inverse problem. There are a number of
limitations in modeling biological compared to physical systems; data are often
incomplete due to the limitations on sampling sites; sampling times and number of
studies that can be performed; data are imprecise; constraints related to the biology
and the experimental techniques must be embedded in the analysis (3, 4).

Because the structure of a biological system is not known, a model developed to
fit data from the system also represents a hypothesis of the system. Models therefore
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are not static, but evolve over time as studies provide new information that extend
and refine the model. A good example is the development of models that describe
lipoprotein kinetics (5).

Tip: The aim of modeling is to create a mathematical 'likeness' of a system so that
the model behaves in the same way as the system.

SYSTEM
(Structure to be determined)
INPUT RESPONSE | &
(e.g., drug dose) (e.g., drug in "
plasma)

Fig 1.1 Biological modeling is the process of determining the structure of a system from its
response.

I1. Approaches to modeling

There are three general approaches to modeling biological systems. They relate
to whether the model is defined before or after a study, whether the model
parameters are related to the structure (physiology or chemistry) of a system, and
the complexity of the model. The approach chosen by an investigator depends on
the purpose for modeling the system.

1) A priori versus post priori:

A priori (or theoretical) models are developed based on existing information
about a system. For example, a model for glucose metabolism could be based on in
vitro studies of the individual enzyme reactions. An example of this approach is
described by Garfinkel et al (11). By contrast, post priori (or empirical) models are
based on new observations. With this approach, a model for glucose metabolism
would be developed by injecting labeled glucose in vivo, measuring its
disappearance from blood, and proposing a model to fit the data. An example of this
approach is described by Foster et al. (10).

2) Descriptive versus mechanistic

Descriptive models consist of mathematical functions or equations that fit the
observed data. Parameters in the equations generally have no relationship to entities
in the system. An example is an equation that is the sum of exponentials. Although
descriptive models are usually simpler than mechanistic models (described below),




