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Preface

Revising this textbook has been a special challenge, for a very nice reason. So many
people have read this book, and taught from it, and even loved it. The spirit of the book
could never change. This text was written to help our teaching of linear algebra keep up
with the enormous importance of this subject—which just continues to grow.

One step was certainly possible and desirable—to add new problems. Teaching
for all these years required hundreds of new exam questions (especially with quizzes
going onto the web). I think you will approve of the extended choice of problems. The
questions are still a mixture of explain and compute—the two complementary approaches
to learning this beautiful subject.

I personally believe that many more people need linear algebra than calculus.
Isaac Newton might not agree ! But he isn’t teaching mathematics in the 21st century
(and maybe he wasn’t a great teacher, but we will give him the benefit of the doubt).
Certainly the laws of physics are well expressed by differential equations. Newton needed
calculus—quite right. But the scope of science and engineering and management (and
life) is now so much wider, and linear algebra has moved into a central place.

May I say a little more, because many universities have not yet adjusted the balance
toward linear algebra. Working with curved lines and curved surfaces, the first step is
always to linearize. Replace the curve by its tangent line, fit the surface by a plane,
and the problem becomes linear. The power of this subject comes when you have ten
variables, or 1000 variables, instead of two.

You might think I am exaggerating to use the word “beautiful” for a basic course
in mathematics. Not at all. This subject begins with two vectors v and w, pointing in
different directions. The key step is to take their linear combinations. We multiply to
get 3v and 4w, and we add to get the particular combination 3v + 4w. That new vector
is in the same plane as v and w. When we take all combinations, we are filling in the
whole plane. If I draw v and w on this page, their combinations cv + dw fill the page
(and beyond), but they don’t go up from the page.

In the language of linear equations, I can solve cv +dw = b exactly when the
vector b lies in the same plane as v and w.

Matrices

I will keep going a little more to convert combinations of three-dimensional vectors
into linear algebra. If the vectors are v = (1, 2, 3) and w = (1, 3, 4), put them into the
columns of a matrix:

1 1
matrix = |2 3
3 4
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To find combinations of those columns, “multiply” the matrix by a vector (c, d):

11 1 1
Linear combinations cv + dw 2 3 [Z] =c|2| +d|3].
3 4 3 4
Those combinations fill a vector space. We call it the column space of the matrix.

(For these two columns, that space is a plane.) To decide if b = (2,5, 7) is on that
plane, we have three components to get right. So we have three equations to solve:

11 2 c+ d=2

2 3 [;]: 5| means 2c+3d=5

3 4 7 3c+4d =1.

I leave the solution to you. The vector b = (2, 5, 7) does lie in the plane of v and w.
If the 7 changes to any other number, then b won’t lie in the plane—it will not be a
combination of v and w, and the three equations will have no solution.

Now I can describe the first part of the book, about linear equations Ax = b.
The matrix A has n columns and m rows. Linear algebra moves steadily to n vectors
in m-dimensional space. We still want combinations of the columns (in the column
space). We still get m equations to produce b (one for each row). Those equations
may or may not have a solution. They always have a least-squares solution.

The interplay of columns and rows is the heart of linear algebra. It’s not totally easy,
but it’s not too hard. Here are four of the central ideas:

1. The column space (all combinations of the columns).

2. The row space (all combinations of the rows).

3. The rank (the number of independent columns) (or rows).
4. Elimination (the good way to find the rank of a matrix).

I will stop here, so you can start the course.

Web Pages

It may be helpful to mention the web pages connected to this book. So many messages
come back with suggestions and encouragement, and I hope you will make free use
of everything. You can directly access http://web.mit.edu/18.06, which is continually
updated for the course that is taught every semester. Linear algebra is also on MIT’s
OpenCourseWare site hitp://ocw.mit.edu, where 18.06 became exceptional by including
videos of the lectures (which you definitely don’t have to watch. .. ). Here is a part of
what is available on the web:

Lecture schedule and current homeworks and exams with solutions.
The goals of the course, and conceptual questions.

Interactive Java demos (audio is now included for eigenvalues).
Linear Algebra Teaching Codes and MATLAB problems.

Videos of the complete course (taught in a real classroom).

il ol o

The course page has become a valuable link to the class, and a resource for the students.
I am very optimistic about the potential for graphics with sound. The bandwidth for
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voiceover is low, and FlashPlayer is freely available. This offers a quick review (with
active experiment), and the full lectures can be downloaded. I hope professors and
students worldwide will find these web pages helpful. My goal is to make this book as
useful as possible with all the course material I can provide.

Other Supporting Materials
Student Solutions Manual 0-495-01325-0 The Student Solutions Manual provides

solutions to the odd-numbered problems in the text.

Instructor's Solutions Manual 0-030-10568-4 The Instructor’s Solutions Manual has
teaching notes for each chapter and solutions to all of the problems in the text.

Structure of the Course

The two fundamental problems are Ax = b and Ax = Ax for square matrices A.
The first problem Ax = b has a solution when A has independent columns. The second
problem Ax = Ax looks for independent eigenvectors. A crucial part of this course is
to learn what “independence” means.

I believe that most of us learn first from examples. You can see that

A=

W N =

2
3 does not have independent columns.
4

Column 1 plus column 2 equals column 3. A wonderful theorem of linear algebra says
that the three rows are not independent either. The third row must lie in the same plane
as the first two rows. Some combination of rows 1 and 2 will produce row 3. You
might find that combination quickly (I didn’t). In the end I had to use elimination to
discover that the right combination uses 2 times row 2, minus row 1.

Elimination is the simple and natural way to understand a matrix by producing
a lot of zero entries. So the course starts there. But don’t stay there too long! You
have to get from combinations of the rows, to independence of the rows, to “dimension
of the row space.” That is a key goal, to see whole spaces of vectors: the row space
and the column space and the nullspace.

A further goal is to understand how the matrix acts. When A multiplies x it produces
the new vector Ax. The whole space of vectors moves—it is “transformed” by A. Special
transformations come from particular matrices, and those are the foundation stones of
linear algebra: diagonal matrices, orthogonal matrices, triangular matrices, symmetric
matrices.

The eigenvalues of those matrices are special too. I think 2 by 2 matrices provide
terrific examples of the information that eigenvalues A can give. Sections 5.1 and 5.2
are worth careful reading, to see how Ax = Ax is useful. Here is a case in which small
matrices allow tremendous insight.

Overall, the beauty of linear algebra is seen in so many different ways:

1. Visualization. Combinations of vectors. Spaces of vectors. Rotation and reflection
and projection of vectors. Perpendicular vectors. Four fundamental subspaces.
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2. Abstraction. Independence of vectors. Basis and dimension of a vector space.
Linear transformations. Singular value decomposition and the best basis.

3. Computation. Elimination to produce zero entries. Gram—Schmidt to produce
orthogonal vectors. Eigenvalues to solve differential and difference equations.

4. Applications. Least-squares solution when Ax = b has too many equations. Dif-
ference equations approximating differential equations. Markov probability matrices
(the basis for Google!). Orthogonal eigenvectors as principal axes (and more...).

To go further with those applications, may I mention the books published by Wellesley-
Cambridge Press. They are all linear algebra in disguise, applied to signal processing
and partial differential equations and scientific computing (and even GPS). If you look
at http://www.wellesleycambridge.com, you will see part of the reason that linear algebra
is so widely used.

After this preface, the book will speak for itself. You will see the spirit right away.
The emphasis is on understanding—/ try to explain rather than to deduce. This is a
book about real mathematics, not endless drill. In class, I am constantly working with
examples to teach what students need.

Acknowledgments

I enjoyed writing this book, and I certainly hope you enjoy reading it. A big part of the
pleasure comes from working with friends. I had wonderful help from Brett Coonley
and Cordula Robinson and Erin Maneri. They created the I£TgX files and drew all the
figures. Without Brett’s steady support I would never have completed this new edition.
Earlier help with the Teaching Codes came from Steven Lee and Cleve Moler.
Those follow the steps described in the book; MATLAB and Maple and Mathematica are
faster for large matrices. All can be used (optionally) in this course. I could have added
“Factorization” to that list above, as a fifth avenue to the understanding of matrices:

[L,U,P] = lu(A) for linear equations
[Q,R] = qr(A) to make the columns orthogonal
[S,E] = eig(A) to find eigenvectors and eigenvalues.

In giving thanks, I never forget the first dedication of this textbook, years ago.
That was a special chance to thank my parents for so many unselfish gifts. Their
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1

I\Ilatric_es an_d .
Gaussian Elimination

1.1 INTRODUCTION

This book begins with the central problem of linear algebra: solving linear equations.
The most important case, and the simplest, is when the number of unknowns equals the
number of equations. We have n equations in n unknowns, starting with n = 2:

Two equations Ix + 2y = 3

1
Two unknowns 4x + S5y = 6. )

The unknowns are x and y. [ want to describe two ways, elimination and determinants,

to solve these equations. Certainly x and y are determined by the numbers 1, 2, 3, 4, 5, 6.
The question is how to use those six numbers to solve the system.

1. Elimination Subtract 4 times the first equation from the second equation. This
eliminates x from the second equation, and it leaves one equation for y:

(equation 2) — 4(equation 1) —3y = —6. 2)
Immediately we know y = 2. Then x comes from the first equation 1x 4 2y = 3:
Back-substitution Ix+22)=3 gives x =—1. 3)

Proceeding carefully, we check that x and y also solve the second equation. This should
work and it does: 4 times (x = —1) plus 5 times (y = 2) equals 6.

2. Determinants The solution y = 2 depends completely on those six numbers in
the equations. There must be a formula for y (and also x). It is a “ratio of determinants”
and I hope you will allow me to write it down directly:

V 3\
4 6 1-6-3-4  —6
~ A= = =12 )

y:
HE

1 2(‘ I-5—2.4. -3
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That could seem a little mysterious, unless you already know about 2 by 2 determinants.
They gave the same answer y = 2, coming from the same ratio of —6 to —3. If we
stay with determinants (which we don’t plan to do), there will be a similar formula to
compute the other unknown, x:

3 2
_le 5’_ 3.5-2:6 _ 3 _ S
=1 2| " {is=am. "3 - ©)
HH

Let me compare those two approaches, looking ahead to real problems when 7 is
much larger (n = 1000 is a very moderate size in scientific computing). The truth is
that direct use of the determinant formula for 1000 equations would be a total disaster.
It would use the million numbers on the left sides correctly, but not efficiently. We will
find that formula (Cramer’s Rule) in Chapter 4, but we want a good method to solve
1000 equations in Chapter 1.

That good method is Gaussian Elimination. This is the algorithm that is constantly
used to solve large systems of equations. From the examples in a textbook (n = 3 is
close to the upper limit on the patience of the author and reader) you might not see much
difference. Equations (2) and (4) used essentially the same steps to find y = 2. Certainly
x came faster by the back-substitution in equation (3) than the ratio in (5). For larger
n there is absolutely no question. Elimination wins (and this is even the best way to
compute determinants).

The idea of elimination is deceptively simple—you will master it after a few exam-
ples. It will become the basis for half of this book, simplifying a matrix so that we can
understand it. Together with the mechanics of the algorithm, we want to explain four
deeper aspects in this chapter. They are:

1. Linear equations lead to geometry of planes. It is not easy to visualize a nine-
dimensional plane in ten-dimensional space. It is harder to see ten of those planes,
intersecting at the solution to ten equations—but somehow this is almost possible.
Our example has two lines in Figure 1.1, meeting at the point (x, y) = (-1, 2).
Linear algebra moves that picture into ten dimensions, where the intuition has to
imagine the geometry (and gets it right).

2. We move to matrix notation, writing the n unknowns as a vector x and the n
equations as Ax = b. We multiply A by “elimination matrices” to reach an up-
per triangular matrix U. Those steps factor A into L times U, where L is lower

B b
x+2y=3 x+2y=3
} \\\x — \x
4x+5y =6 4x+8y =6 4x + 8y =12
One solution (x, y) = (—1,2) Parallel: No solution Whole line of solutions

Figure 1.1 The example has one solution. Singular cases have none or too many.
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triangular. I will write down A and its factors for our example, and explain them at the
right time:

Factorization A= [i g] = [:1 ?] [(l) _g] = L times U. (6)
First we have to introduce matrices and vectors and the rules for multiplication.
Every matrix has a transpose A". This matrix has an inverse A~".

3. Inmostcaseselimination goes forward without difficulties. The matrix has an inverse
and the system Ax = b has one solution. In exceptional cases the method will break
down—either the equations were written in the wrong order, which is easily fixed
by exchanging them, or the equations don’t have a unique solution.

That singular case will appear if 8 replaces 5 in our example:

Singular case Ix + 2y = 3

v
Two parallel lines 4x + 8y = 6. @

Elimination still innocently subtracts 4 times the first equation from the second. But
look at the result!

(equation 2) — 4(equation 1) 0=-6.

This singular case has no solution. Other singular cases have infinitely many solu-
tions. (Change 6 to 12 in the example, and elimination will lead to 0 = 0. Now y
can have any value.) When elimination breaks down, we want to find every possible
solution.

4. We need arough count of the number of elimination steps required to solve a system
of size n. The computing cost often determines the accuracy in the model. A hundred
equations require a third of a million steps (multiplications and subtractions). The
computer can do those quickly, but not many trillions. And already after a million
steps, roundoff error could be significant. (Some problems are sensitive; others are
not.) Without trying for full detail, we want to see large systems that arise in practice,
and how they are actually solved.

The final result of this chapter will be an elimination algorithm that is about as
efficient as possible. It is essentially the algorithm that is in constant use in a tremendous
variety of applications. And at the same time, understanding it in terms of matrices—the
coefficient matrix A, the matrices E for elimination and P for row exchanges, and the
final factors L and U—is an essential foundation for the theory. I hope you will enjoy
this book and this course.

1.2 THE GEOMETRY OF LINEAR EQUATIONS

The way to understand this subject is by example. We begin with two extremely humble
equations, recognizing that you could solve them without a course in linear algebra.
Nevertheless I hope you will give Gauss a chance:

2x —y=1
x+y=>5.

We can look at that system by rows or by columns. We want to see them both.
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The first approach concentrates on the separate equations (the rows). That is the
most familiar, and in two dimensions we can do it quickly. The equation 2x — y = 1 is
represented by a straight line in the x-y plane. The line goes through the points x = 1,
y=landx = % vy = 0 (and also through (2, 3) and all intermediate points). The second
equation x 4+ y = 5 produces a second line (Figure 1.2a). Its slope is dy/dx = —1 and
it crosses the first line at the solution.

The point of intersection lies on both lines. It is the only solution to both equations.
That point x = 2 and y = 3 will soon be found by “elimination.”

2r—y=1

-

(1,5) =

N

2 (column 1)
+3 (column 2)

AN
AN

N o(4:2)

(z,y) = (2,3)

(5,0) (2,1) = column 1

T

r+y=>5

(a) Lines meet at * = 2,y = 3 (b) Columns combine with 2 and 3

Figure 1.2 Row picture (two lines) and column picture (combine columns).

The second approach looks at the columns of the linear system. The two separate
equations are really one vector equation:
|1
= |5/

The problem is fo find the combination of the column vectors on the left side that
produces the vector on the right side. Those vectors (2, 1) and (—1, 1) are represented
by the bold lines in Figure 1.2b. The unknowns are the numbers x and y that multiply
the column vectors. The whole idea can be seen in that figure, where 2 times column 1
is added to 3 times column 2. Geometrically this produces a famous parallelogram.
Algebraically it produces the correct vector (1, 5), on the right side of our equations.
The column picture confirms that x = 2 and y = 3.

More time could be spent on that example, but I would rather move forward to
n = 3. Three equations are still manageable, and they have much more variety:

Column form x [ﬂ +y [_i

2u+ v+ w= 5
Three planes 4u — 6v = -2 (1)
—2u+ 7v+2w= 9.

Again we can study the rows or the columns, and we start with the rows. Each equation
describes a plane in three dimensions. The first plane is 2u + v + w = 5, and it is
sketched in Figure 1.3. It contains the points (%, 0,0) and (0, 5,0) and (0,0, 5). It is
determined by any three of its points—provided they do not lie on a line.

Changing 5 to 10, the plane 2u + v + w 10 would be parallel to this one. It
contains (5,0, 0) and (0, 10, 0) and (0, 0, 10), twice as far from the origin—which is
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2u+ v+ w =5 (sloping plane)

4u — 6v = —2 (vertical plane)

\

= point of intersection with
third plane = solution

line of intersection: first two planes

u

Figure 1.3 The row picture: three intersecting planes from three linear equations.

the center point u = 0, v = 0, w = 0. Changing the right side moves the plane parallel
to itself, and the plane 2u + v + w = 0 goes through the origin.

The second plane is 4u — 6v = —2. It is drawn vertically, because w can take any
value. The coefficient of w is zero, but this remains a plane in 3-space. (The equation
4u = 3, or even the extreme case u = 0, would still describe a plane.) The figure shows
the intersection of the second plane with the first. That intersection is a line. In three
dimensions a line requires two equations; in n dimensions it will require n — 1.

Finally the third plane intersects this line in a point. The plane (not drawn) represents
the third equation —2u + 7v 4+ 2w =9, and it crosses the lineatu = 1, v =1, w = 2.
That triple intersection point (1, 1, 2) solves the linear system.

How does this row picture extend into n dimensions? The n equations will contain n
unknowns. The first equation still determines a “plane.” It is no longer a two-dimensional
plane in 3-space; somehow it has “dimension” n — 1. It must be flat and extremely thin
within n-dimensional space, although it would look solid to us.

If time is the fourth dimension, then the plane ¢+ = 0 cuts through four-dimensional
space and produces the three-dimensional universe we live in (or rather, the universe
as it was at t = 0). Another plane is z = 0, which is also three-dimensional; it is the
ordinary x-y plane taken over all time. Those three-dimensional planes will intersect!
They share the ordinary x-y plane at + = 0. We are down to two dimensions, and the
next plane leaves a line. Finally a fourth plane leaves a single point. It is the intersection
point of 4 planes in 4 dimensions, and it solves the 4 underlying equations.

I will be in trouble if that example from relativity goes any further. The point is that
linear algebra can operate with any number of equations. The first equation produces an
(n — 1)-dimensional plane in n dimensions. The second plane intersects it (we hope) in
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a smaller set of “dimension n — 2.”” Assuming all goes well, every new plane (every new
equation) reduces the dimension by one. At the end, when all n planes are accounted
for, the intersection has dimension zero. It is a point, it lies on all the planes, and its
coordinates satisfy all n equations. It is the solution!

Column Vectors and Linear Combinations

We turn to the columns. This time the vector equation (the same equation as (1)) is

2 1 1 5
Column form u| 4| +v|-6| 4+w|0| = |-2| =b. 2)
-2 7 2 9

Those are three-dimensional column vectors. The vector b is identified with the point
whose coordinates are S, —2, 9. Every point in three-dimensional space is matched to a
vector, and vice versa. That was the idea of Descartes, who turned geometry into algebra
by working with the coordinates of the point. We can write the vector in a column, or
we can list its components as b = (5, —2, 9), or we can represent it geometrically by an
arrow from the origin. You can choose the arrow, or the point, or the three numbers. In
six dimensions it is probably easiest to choose the six numbers.

We use parentheses and commas when the components are listed horizontally, and
square brackets (with no commas) when a column vector is printed vertically. What really
matters is addition of vectors and multiplication by a scalar (a number). In Figure 1.4a
you see a vector addition, component by component:

5 0 0 5
Vector addition of + |-2] + [0 = [-2].
0 0 9 9

5
[—2:| = linear combination equals b

-

2(column 3)

ERERY

columns 1 + 2

(a) Add vectors along axes (b) Add columns 1 + 2+ 3+ 3)

Figure 1.4 The column picture: linear combination of columns equals b.
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In the right-hand figure there is a multiplication by 2 (and if it had been —2 the vector
would have gone in the reverse direction):

1 2 1 -2
Multiplication by scalars 2101 =10}, -2 (0] =1 0O].
2 4 2 —4

Also in the right-hand figure is one of the central ideas of linear algebra. It uses both
of the basic operations; vectors are multiplied by numbers and then added. The result is
called a linear combination, and this combination solves our equation:

2 1 1 5
Linear combination 1| 4| +1([-6(+2|0| = [-2].
—2 7 2 9

Equation (2) asked for multipliers u, v, w that produce the right side b. Those numbers
are u = 1, v = 1, w = 2. They give the correct combination of the columns. They also
gave the point (1, 1, 2) in the row picture (where the three planes intersect).

Our true goal is to look beyond two or three dimensions into » dimensions. With n
equations in n unknowns, there are n planes in the row picture. There are n vectors in
the column picture, plus a vector b on the right side. The equations ask for a linear com-
bination of the n columns that equals b. For certain equations that will be impossible.
Paradoxically, the way to understand the good case is to study the bad one. Therefore
we look at the geometry exactly when it breaks down, in the singular case.

Row picture: Intersection of planes  Column picture: Combination of columns

The Singuiar Case

Suppose we are again in three dimensions, and the three planes in the row picture do not
intersect. What can go wrong? One possibility is that two planes may be parallel. The
equations 2u + v + w = 5 and 4u 4+ 2v + 2w = 11 are inconsistent—and parallel
planes give no solution (Figure 1.5a shows an end view). In two dimensions, parallel
lines are the only possibility for breakdown. But three planes in three dimensions can be
in trouble without being parallel.

The most common difficulty is shown in Figure 1.5b. From the end view the planes
form a triangle. Every pair of planes intersects in a line, and those lines are parallel. The

KA KN

two parallel planes no intersection line of intersection all planes parallel
(a) (b) (c) (d)

Figure 1.5 Singular cases: no solution for (a), (b), or (d), an infinity of solutions for (c).
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third plane is not parallel to the other planes, but it is parallel to their line of intersection.
This corresponds to a singular system with b = (2, 5, 6):

ut+v+ w=2
No solution, as in Figure 1.5b 2u +3w=>5 3)
3u +v+ 4w = 6.

The first two left sides add up to the third. On the right side that fails: 2 + 5 # 6.
Equation 1 plus equation 2 minus equation 3 is the impossible statement 0 = 1. Thus
the equations are inconsistent, as Gaussian elimination will systematically discover.

Another singular system, close to this one, has an infinity of solutions. When the
6 in the last equation becomes 7, the three equations combine to give 0 = 0. Now the
third equation is the sum of the first two. In that case the three planes have a whole line
in common (Figure 1.5c). Changing the right sides will move the planes in Figure 1.5b
parallel to themselves, and for b = (2, 5, 7) the figure is suddenly different. The lowest
plane moved up to meet the others, and there is a line of solutions. Problem 1.5c is still
singular, but now it suffers from oo many solutions instead of too few.

The extreme case is three parallel planes. For most right sides there is no solution
(Figure 1.5d). For special right sides (like b = (0, 0, 0)!) there is a whole plane of
solutions—because the three parallel planes move over to become the same.

What happens to the column picture when the system is singular? It has to go wrong;
the question is how. There are still three columns on the left side of the equations, and
we try to combine them to produce b. Stay with equation (3):

Singular case: Column picture 1 1 1
Three columns in the same plane u |2 +v |0l +w |3| =b. 4)
Solvable only for b in that plane 3 1 4

For b = (2, 5, 7) this was possible; for b = (2, 5, 6) it was not. The reason is that those
three columns lie in a plane. Then every combination is also in the plane (which goes
through the origin). If the vector b is not in that plane, no solution is possible (Figure 1.6).
That is by far the most likely event; a singular system generally has no solution. But

3 columns
in a plane

3 columns
in a plane
in plane

(a) no solution (b) infinity of solutions

Figure 1.6  Singular cases: b outside or inside the plane with all three columns.



