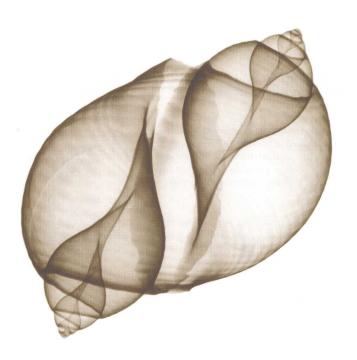

Organic Chemistry

A BIOLOGICAL APPROACH


Not for sale in the

Organic Chemistry

A BIOLOGICAL APPROACH

JOHN McMURRY

Cornell University

THOMSON

BROOKS/COLE

Australia • Brazil • Canada • Mexico • Singapore • Spain United Kingdom • United States

Organic Chemistry: A Biological Approach John McMurry

Publisher, Physical Sciences: David Harris

Senior Development Editor: Sandra Kiselica

Assistant Editor: Ellen Bitter

Editorial Assistant: Lauren Oliviera

Technology Project Manager: Donna Kelley

Executive Marketing Manager: Julie Conover

Marketing Assistant: Michele Colella

Marketing Communications Manager: Bryan Vann

Project Manager, Editorial Production: Lisa Weber

Creative Director: Rob Hugel

Art Director: Lee Friedman

Print Buver: Barbara Britton

© 2007 Thomson Brooks/Cole, a part of The Thomson Corporation. Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license.

ALL RIGHTS RESERVED. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, Web distribution, information storage and retrieval systems, or in any other manner—without the written permission of the publisher.

We gratefully acknowledge SDBS for providing data for Figures on pages 427, 432, 435, 437, 448, 449, 451, 452, 529, 546, 584, 617, 630, 679, and 762. (http://www.aist.go.jp/RIODB/SDBS/, National Institute of Advanced Industrial Science and Technology, 8/26/05).

Library of Congress Control Number: 2006920388

Student Edition: ISBN 0-495-01525-3

Permissions Editor: Joohee Lee

Production Service: Graphic World Inc.

Text Designer: Jeanne Calabrese

Photo Researcher: Dena Digilio Betz

Copy Editor: Graphic World Inc.

Illustrators: 2064design and Graphic World Inc.

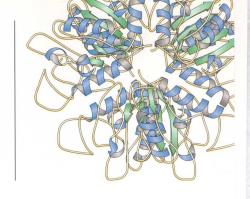
Cover Designer: Lee Friedman

Cover Image: Radiograph by Albert Koetsier,

www.beyondlight.com

Cover Printer: Phoenix Color Corp

Compositor: Graphic World Inc.


Printer: Quebecor World/Versailles

Thomson Higher Education 10 Davis Drive Belmont, CA 94002-3098 USA

For more information about our products, contact us at: Thomson Learning Academic Resource Center 1-800-423-0563

For permission to use material from this text or product, submit a request online at http://www.thomsonrights.com.
Any additional questions about permissions can be submitted by e-mail to thomsonrights@thomson.com.

Preface

Introduction

I've taught organic chemistry many times over many years, and it has often struck me what a disconnect there is between the interests and expectations of me, the teacher, and the interests and expectations of those being taught, my students. I love the logic and beauty of organic chemistry, and I want to pass that feeling on to others. My students, however, seem to worry primarily about getting into medical school. Yes, of course that's a simplification, but there is truth in it. All of us who teach organic chemistry know that a large majority of students in our courses—perhaps 80% or more, and including many chemistry majors—are interested primarily in the life sciences.

But if we are teaching future biologists, biochemists, physicians, and others in the life sciences, why do we continue to teach the way we do? Why do we spend so much time discussing the details of reactions that are of interest to research chemists but have no connection to the biological sciences? Wouldn't the limited amount of time we have be better spent paying more attention to the organic chemistry of living organisms and less to the organic chemistry of the research laboratory? I believe so, and I have written this book, *Organic Chemistry: A Biological Approach*, to encourage others who might also be thinking that the time has come to try something new.

"All of us who teach organic chemistry know that the large majority of students in our courses are interested primarily in the life sciences." John McMurry

Organization

Make no mistake, this is still a textbook on Organic Chemistry, but the guiding principle in deciding what to include and what to leave out has been to focus on those organic reactions that have a direct counterpart in biological chemistry. When looking through the text, three distinct groups of chapters are apparent. The first group (Chapters 1–5, 9, 11, and 12) covers the traditional foundations of organic chemistry that are essential in building the background necessary for further understanding of the science. The second group (Chapters 6–8, 10, and 13–18) provides coverage of common laboratory reactions that have biological counterparts (of which there are many more than you might think). As each laboratory reaction is discussed, a biological example is also shown. The inclusion of these biological reactions makes the material much more relevant for students, who might, for example, be more

"Make no mistake, this is still a textbook on Organic Chemistry." John McMurry interested in reading about trans fatty acids when they're learning about catalytic hydrogenation than when they're learning about lipids. The third group of chapters (19–24) is unique to this text. These chapters deal exclusively with the main classes of biomolecules—amino acids and proteins, carbohydrates, lipids, and nucleic acids—and show how deeply organic chemistry and biochemistry are intertwined. Following an introduction to each class, the major metabolic pathways for that class are discussed from the perspective of mechanistic organic chemistry. See, for example, Sections 20.2 to 20.5 on amino acid metabolism.

Content Choices

Many organic chemists might be surprised to find that such topics as carbene chemistry, acetylide alkylation, allylic bromination, and Diels—Alder reactions are not included in this text. The decision not to cover these topics was not taken lightly, but the space saved by leaving out some nonbiological reactions has been put to good use. Practically all reactions covered are immediately illustrated with biological examples, and approximately 25% of the book is devoted entirely to biomolecules and the organic chemistry of their biotransformations. Furthermore, the deletion of some nonbiological reactions has resulted in a shorter text that many professors will have time to cover in its entirety.

There is more than enough organic chemistry in this text. My hope is that the students we teach, including those who worry about medical school, will come to agree that there is also logic and beauty here.

Features *

Reaction Mechanisms

The innovative vertical presentation of reaction mechanisms that has been so well received in my other texts is retained in *Organic Chemistry: A Biological Approach*. Mechanisms in this format have the reaction steps printed vertically while the changes taking place in each step are explained next to the reaction arrow. Students can see what is occurring at each step in a reaction without having to jump back and forth between structures and text.

Visualization

I want students to see that the mechanisms of biological reactions are the same as those of laboratory organic reactions. Toward this end, and to let students more easily visualize the changes occurring in large biomolecules, this book introduces an innovative method for focusing on the reactive parts in large molecules by ghosting the nonreacting parts. In addition, consistent color, with clearly labeled numbered steps, is used in mechanisms throughout the text to show the progress of the reactions more clearly.

More Features

• The reaction from students and colleagues to my previous texts has been very gratifying, and I have made every effort to keep the writing in this text as lucid and succinct as possible.

"Writing Organic Chemistry: A Biological Approach has been a wonderful learning experience for me. I hope that both you and your students will enjoy and benefit from this text, and I would be very interested in hearing your questions and opinions."

John McMurry.

"The innovative vertical presentation of reaction mechanisms that has been so well received in my other texts is retained in *Organic Chemistry: A Biological Approach.*"

John McMurry

"I want students to see that the mechanisms of biological reactions are the same as those of laboratory organic reactions."

John McMurry

- Why do we have to learn this? I've been asked this question so many times by students that I thought that it would be appropriate to begin each chapter with the answer. Why This Chapter? is a short paragraph at the end of the introduction to every chapter that tells students why the material about to be covered is important and explains how the organic chemistry of each chapter relates to biochemistry.
- Worked Examples are titled to give students a frame of reference. Each Worked Example includes a Strategy and a worked-out Solution and is followed by Problems for students to try on their own.
- Lagniappe (a Creole word meaning "something extra") boxes at the end of each chapter are provided to relate real-world concepts to students' lives.
- The Visualizing Chemistry Problems that conclude each chapter offer students an opportunity to see chemistry in a different way by visualizing molecules rather than by simply interpreting structural formulas.
- Thorough media integration with Organic ChemistryNow™ and Organic OWL is provided to help students practice and test their knowledge of the concepts. The Organic ChemistryNow online assessment program is enhanced with biochemical coverage especially for biology and premed students. Icons throughout the book direct students to the Organic ChemistryNow website. An access code is required to enter Organic ChemistryNow. Visit http://www.thomsonedu.com to register.
- A number of the figures are animated in Organic ChemistryNow. These figures are designated as **Active** in the figure legends.
- Summaries and Key Word lists help students by outlining the key concepts of the chapter.
- Summaries of Reactions bring together the key reactions from the chapter in one complete list.
- An overview entitled "A Preview of Carbonyl Chemistry" follows Chapter 13 and highlights the idea that studying organic chemistry requires both summarizing and looking ahead.
- Current IUPAC nomenclature rules, as updated in 1993, are used to name compounds in this text.

Companions to This Text

Supporting instructor materials are available to qualified adopters. Please consult your local Thomson Brooks/Cole representative for details.

Visit http://www.thomsonedu.com to:

- Locate your local representative
- Download electronic files of text art and ancillaries
- Request a desk copy

For Students

Study Guide and Solutions Manual By Susan McMurry. Provides answers and explanations to all in-text and end-of-chapter exercises. ISBN: 0-495-01530-x

Chemistry Now™ To further student understanding, the text features sensible media integration through the Organic ChemistryNow website, a powerful online learning companion that helps students determine their unique

study needs and provides them with individualized resources. This dynamic interactive resource combines with the text to provide students with a seamless, integrated learning system. A code is required to access Organic ChemistryNow and may be packaged with a new copy of the text or purchased separately. Visit http://www.thomsonedu.com to register for access to Organic ChemistryNow.

OWL for Organic Chemistry The most widely used online chemistry mastery homework system in the world! Developed at the University of Massachusetts, Amherst, class-tested by thousands of students, and used by more than 200 institutions and 50,000 students, OWL is the most widely used system providing fully class-tested content in an easy-to-use system that has proved reliable for tens of thousands of students. OWL is also customizable, cross-platform, and available for introductory/preparatory chemistry, general chemistry, organic chemistry, liberal arts chemistry, and allied health/GOB. The OWL Online Webbased Learning system provides students with instant analysis and feedback on homework problems, modeling questions, and animations to accompany select Thomson Brooks/Cole texts. This powerful system maximizes each student's learning experience and, at the same time, reduces faculty workload and helps facilitate instruction. OWL's organic chemistry content takes advantage of the latest technological advances in online computer modeling using Jmol and MarvinSketch. Jmol, an interactive molecule viewer, enables students to rotate molecules, to change the display mode (ball and stick, space fill, etc.), and to measure bond distances and angles. MarvinSketch, a Java applet for drawing chemical structures, enables OWL to grade chemical structures that the students draw. A fee-based code is required for access to the specific OWL database selected. OWL is available for use only within North America.

Pushing Electrons: A Guide for Students of Organic Chemistry, third edition By Daniel P. Weeks. A workbook designed to help students learn techniques of electron pushing. Its programmed approach emphasizes repetition and active participation. ISBN: 0-03-020693-6

Spartan Model Electronic Modeling Kit A set of easy-to-use builders allow for the construction and 3-D manipulation of molecules of any size or complexity. This kit includes the SpartanModel software on CD-ROM, an extensive molecular database, 3-D glasses, and a *Tutorial and Users Guide* that includes a wealth of activities to help you get the most out of your course. ISBN: 0-495-01793-0

For Instructors

JoinIn™ on Turning Point® Organic Chemistry Book-specific JoinIn content for Response Systems tailored to *Organic Chemistry: A Biological Approach* allows you to transform your classroom and assess your students' progress with instant in-class quizzes and polls. Our exclusive agreement to offer TurningPoint software lets you pose book-specific questions and display students' answers seamlessly within the Microsoft® PowerPoint® slides of your own lecture, in conjunction with the "clicker" hardware of your choice. Enhance how your students interact with you, your lecture, and one another. Contact your local Thomson Brooks/Cole representative to learn more.

Multimedia Manager CD-ROM The Multimedia Manager is a dual-platform digital library and presentation tool that provides art and tables from the main text in a variety of electronic formats that are easily exported into other software packages. This enhanced CD-ROM also contains simulations, molecular models, and QuickTime movies to supplement lectures as well as electronic files of various print supplements. Slides use the full power of Microsoft PowerPoint and incorporate videos, animations, and other assets from Organic ChemistryNow. Instructors can customize their lecture presentations by adding their own slides or by deleting or changing existing slides.

Test Bank By Thomas Lectka, Johns Hopkins University. Hundreds of questions and answers organized to correspond to the main text.

iLrn Testing This easy-to-use software, containing questions and problems authored specifically for the text, allows professors to create, deliver, and customize tests in minutes.

WebCT/Now Integration Instructors and students enter Organic ChemistryNow through their familiar Blackboard or WebCT environment without the need for a separate user name or password and can access all of the Organic ChemistryNow assessments and content.

The Organic Chemistry of Biological Pathways By John McMurry and Tadhg Begley. Intended for advanced undergraduates and graduate students in all areas of chemistry and biochemistry, *The Organic Chemistry of Biological Pathways* provides an accurate treatment of the major biochemical pathways from the perspective of mechanistic organic chemistry. Roberts and Company Publishers, ISBN: 0-9747077-1-6

Organic Chemistry Laboratory Manuals Thomson Brooks/Cole is pleased to offer you a choice of organic chemistry laboratory manuals catered to fit your needs. Visit http://www.thomsonedu.com. Customizable laboratory manuals also can be assembled. Go to http://cerlabs.brookscole.com/ and http://outernetpublishing.com/ for more information.

Acknowledgments

I thank all the people who helped to shape this book and its message. At Thomson Brooks/Cole they include David Harris, publisher; Sandra Kiselica, senior development editor; Julie Conover, executive marketing manager; Lisa Weber, senior production project manager; Ellen Bitter, assistant editor; and Suzanne Kastner at Graphic World Inc. Many thanks to John R. Scheffer, University of British Columbia; Eric Kantorowski, California Polytechnic State University; and Jacquelyn Gervay-Hague, University of California, Davis, for serving as the accuracy reviewers. They carefully read and checked the page proofs for this text before publication.

I am grateful to colleagues who reviewed the manuscript for this book and participated in a survey about its approach. They include:

Manuscript Reviewers

Helen E. Blackwell, University of Wisconsin

Joseph Chihade, Carleton College

Robert S. Coleman, Ohio State University

John Hoberg, University of Wyoming

Eric Kantorowski, California Polytechnic State University

Thomas Lectka, Johns Hopkins University

Paul Martino, Flathead Valley Community College

Eugene Mash, University of Arizona

Pshemak Maslak, Pennsylvania State University

Kevin Minbiole, James Madison University

Andrew Morehead, East Carolina University

K. Barbara Schowen, University of Kansas

Survey Respondents

Lovell Agwaramgbo Dillard University

Khalique Ahmed Lynn University

Peter Alaimo

Seattle University

Ananda Amarasekara Prairie View A&M University

Anthony Amaro Jamestown College

Michael Ansell

Las Positas College

Lawrence Armstrong

State University of New York,

Oneonta

Mark Armstrong Blackburn College

L. Nyenty Arrey Capital University

Janet Asper Colorado College

Allyson Backstrom Midland Lutheran College

David Baker Delta College

David C. Baker

University of Tennessee

Bruce Baldwin

Spring Arbor University

C. Eric Ballard University of Tampa Raymond R. Bard University of Portland Loren Barnhurst

Southern Adventist University

Les Battles

Arkansas State University

Philip S. Beauchamp

California State Polytechnic

University, Pomona

Mary Beck

Nassau Community College

Vladimir Benin University of Dayton Jacqueline Bennett Drury University David Bergbreiter

Texas A&M University

Loren Bertocci

Salem International University

Joseph F. Bieron Canisius College Sean Birke

Jefferson College Dan Blanchard Kutztown University

Ron Blankespoor Calvin College Erich Blossey Rollins College

Shelly Blunt

University of Southern Indiana

Glenn Allen Bobo

Bevill State Community College

Gray Bowman

High Point University

Morris Bramlett

University of Arkansas, Monticello

Lorraine Brewer

University of Arkansas

David Brook

University of Detroit, Mercy

Cindy Browder Fort Lewis College

David Brown

Florida Gulf Coast University

David M. Brown Davidson College Sheila Browne

Mount Holyoke College

Alan J. Bruha

Lewis and Clark Community College

Edward Brush

Bridgewater State College

Edwin Bryant

Lansing Community College

Arthur Bull Oakland University

Chuck Buller

Hutchinson Community College

Paul Buonora

California State University,

Long Beach Kelly Butzler

Pennsylvania College of Technology

Angela Carraway

Meridian Community College

Elaine Carter

Los Angeles City College

Kay Castagnoli

Virginia Polytechnic Institute

and State University

Brian Cavitt

Abilene Christian University

Bradley Chamberlain

Luther College

Victoria Chang Kutztown University

Amber Charlebois

William Paterson University

Richard Chen

Lenoir Community College

Robert Chestnut

Eastern Illinois University

Ralph Christensen

North Central Michigan College

Andrew M. Chubb

Saginaw Valley State University

James Ciaccio Fordham University Melissa Betz Cichowicz West Chester University

Allen Clabo

Francis Marion University

Caroline Clower

Clayton State University

Elena J. Colicelli

College of Saint Elizabeth

David Collard

Georgia Institute of Technology

Breege Concannon

Wahtenaw Community College

Bernadette Corbett

Metropolitan Community College

Perry S. Corbin Ashland University Kimberley Cousins

California State University, San

Bernardino Dan Crane

Northwestern College

Joseph Crockett

Bridgewater College of Virginia

David Crouse

Tennessee Technological University

Mark Cunningham

Atlanta Metropolitan College

Julian Davis

St. Edward's University

Kenneth Davis Lees-McRae College Trudy A. Dickneider University of Scranton

Joseph B. Digiorgio

California State University,

Sacramento Marvin Dixon

William Jewell College

Marion Doig

College of Charleston

Debra D. Dolliver

Southeastern Louisiana University

Veljko Dragojlovic

Nova Southeastern University

Malcolm J. D'Souza Wesley College Tina Duffey

Samford University

Joyce Easter

Virginia Wesleyan College Chemistry Department

Thomas A. Eaton St. Thomas University Thomas H. Eberlein

Pennsylvania State University,

Schuylkill Campus
Timothy Eckert
Carthage College
Roger A. Egolf
Penn State University

Penn State University, Lehigh Valley Campus

Susan Ensel Hood College Karen Erickson Clark University John Esteb

Butler University Felicia Etzkorn

Virginia Tech Thomas Evans Denison University

John Farrar

Indiana University, Purdue University, Fort Wayne Nathaniel Finney University of Zurich

Steven A. Fleming Brigham Young University

James Fletcher Creighton University Craig Flowers
Bluefield College
Joseph M. Fortunak
Howard University
David Fraley
Georgetown College

Washington and Lee University

Gary Frederick

Marcia France

Brigham Young University.

Hawaii

Andrew French Albion College

Jeff Frick

Illinois Wesleyan University

Don Fujito La Roche College H. Kenneth Fuller Big Sandy Community and Technical College

August Gallo

University of Louisiana, Lafayette

Daqing Gao

Queensborough Community College

Xiaolian Gao University of Houston

Michael Garoutte

Missouri Southern State University

Ralph Gatrone

Virginia State University

Edwin Geels Dordt College A. Denise George

Nebraska Wesleyan University

Graeme C. Gerrans University of Virginia

Neil Glagovich

Central Connecticut State University

Jeff Glans

Sacred Heart University

James B. Gloer University of Iowa

Ian Gould

Arizona State University

John Griswold Cedar Crest College Stephen Gross Creighton University John R. Grunwell

John R. Grunwell Miami University Rich Gurney Simmons College Ram Gurumurthy San Diego City College

Arthur Haber

Morrisville State College

Coleman Hamel Moravian College Peter Hanson

Wittenberg University

Michele R. Harris

Stephen F. Austin State University

Martha A. Hass

Albany College of Pharmacy

Neil Heckman Hastings College Rick Heldrich College of Charleston

Lars H. Hellberg

San Diego State University

Eric Helms

State University of New York,

Geneseo

David C. Helseth Family of Faith College

Geneive E. Henry

Susquehanna University

Christine Hermann Radford University

Bruce J. Heyen Tabor College Robert Heyer

Kirkwood Community College

Gene Hiegel

California State University, Fullerton

Gary Histand Bethel College James R. Hohman

Fort Hays State University

Robert Holloway Schreiner University

Steven Holmgren

Montana State University,

Bozeman Douglas E

Douglas Holub Ottawa University

Isaac Hon

Albertus Magnus College

William E. Hopper

Florida Memorial University

H. Liland Horten North Park University

William Hoyt

Saint Joseph's College of Maine

Victor J. Hruby University of Arizona

Paul Hudrlik Howard University Michael T. Huggins University of West Florida

Martin Hulce Creighton University

Robyn Hyde Westminster College

Tamera Jahnke

Southwest Missouri State University

Joe Jeffers

Ouachita Baptist University

Mian Jiang

East Tennessee State University

David M. Johnson University of Texas,

San Antonio Maitland Jones, Jr. Princeton University

Stacy J. Jones

Northwest Mississippi Community College Thomas Nicholas Jones College of St. Benedict

Ismail Kady

East Tennessee State University

Thomas Katz Columbia University

Don Kaufman

University of Nebraska, Kearney

Naod Kebede

Edinboro University of Pennsylvania

Ron Keiper

Valencia Community College

F. W. Kelly Casper College Mark Keranen

University of Minnesota, Crookston

Robert Kerber

State University of New York,

Stony Brook Daniel Ketcha

Wright State University

Sarah Kirk

Williamette University

Kevin Kittredge

Miami University of Ohio

Susan J. Klein Manchester College Timm Knoerzer Nazareth College

Martin G. Kociolek Pennsylvania State University,

Erie Campus Michael Koscho

Mississippi State University

George S. Kriz

Western Washington University

Paul J. Kropp

University of North Carolina,

Chapel Hill

Kevin G. Laeske

Wisconsin Lutheran College

Kenneth LaiHing Oakwood College Joseph Landesberg Adelphi University Robert G. Landolt

Texas Wesleyan University

Ken Latham Century College Robert E. Leard III Alcorn State University

David C. Lever

Ohio Wesleyan University

Chunmei Li Stephen F. Austin State University Deborah Lieberman University of Cincinnati

Peter Lillya

University of Massachusetts

James G. Lindberg Grinnell College Harriet Lindsay

Eastern Michigan University

Louis J. Liotta Stonehill College Robert Loeschen

California State University,

Long Beach

Marshall W. Logue

Michigan Technological University

Maria O. Longas

Purdue University, Calumet

Donald Lorance Vanguard University

Andrew B. Lowe

University of Southern Mississippi

Tim Lubben

Northwestern College

Eddie Luzik

University of New Haven

Suzanne Mabrouk The Citadel

Bernard Majdi Waycross College George Majetich University of Georgia

Ghislain R. Mandouma University of Maryland,

Eastern Shore

Eric R. Marinez

California State University,

Long Beach

Cheryl Mascarenhas Benedictine University

Linda Mascavage Arcadia University

Salah Massoud

University of Louisiana, Lafayette

Dan Mattern

University of Mississippi

Francis Mayville DeSales University

Toni McCall
Angelina College
Christina McCartha
Newberry College
Christ McDanald

Chriss McDonald Lycoming College Cynthia McGowan Merrimack College

Wayne McGraw Louisiana College Edward McIntee College of St. Benedict

Neil McKelvie

City College of New York

Keith Mead

Mississippi State University

Rosalyn Meadows

Wallace State Community College

Panayiotis Meleties

Bronx Community College

Christina Mewhinney Eastfield College

Dawcett Middleton Rose State College

Richard F. Milaszewski Framingham State College

Leanne Miller

Pennsylvania State University, York

L. Ray Miller
York College
David Modarelli
University of Akron
Layne A. Morsch
DePaul University
Rajeev Muthyala
Queens College, CUNY

Brian Myers

Ohio Northern University

John A. Myers

North Carolina Central University

Terry Newirth
Haverford College
Fatemeh Nichols
East Central College
Elva Mae Nicholson
Eastern Michigan University

David Nickell

Washtenaw Community College

Jacqueline A. Nikles

University of Alabama, Birmingham

Ernest G. Nolen Colgate University Charles F. Nutaitis Lafayette College Godson C. Nwokogu Hampton University

Abe Ojo

Bainbridge College Sandra L. Olmsted Augsburg College Richard Owen North Harris College

Shallee Page

University of Maine, Machias

Christopher Palmer Ohlone College Raj Pandian

University of New Orleans

Ann Paterson

Williams Baptist College

Robert Patterson

University of Southern Mississippi

Stephen R. Patton Missouri Valley College

Wesley Pearson St. Olaf College David Peitz

Wayne State College Donald R. Perine University of Mobile

Patty Pieper

Harold W. Pier

Anoka-Ramsey Community College

Utica College Kenneth Pohlmann St. Mary's University Allison H. Predecki Shippensburg University

Martin Quirke

Florida International University

Paul R. Rablen Swarthmore College Nicholas J. Ramer

Long Island University, C.W. Post

Anne Reeve Lynchburg College Joel M. Ressner West Chester University

Rob Ronald

Washington State University

Alan Rosan Drew University William Rosen

University of Rhode Island

Miriam Rossi Vassar College H. Alan Rowe

Norfolk State University

Michael D. Ruane

Eastern Illinois University

Suzanne Ruder

Virginia Commonwealth

University Drew Ruth

Drew Rutherford Concordia College Roseann K. Sachs Messiah College Matthew Saderholm

Berea College

Somnath Sarkar Central Missouri State University

Paul B. Savage Brigham Young University

brigham roung University

Alfred A. Scala

Worcester Polytechnic Institute

Margaret E. Schott Dominican University

Paul Scudder

New College of Florida

Alexander J. Seed Kent State University

Grigoriy A. Sereda

University of South Dakota

Elaine Shea Loyola College

Melvin Shemluck

Quinsigamond Community College

James Shriver Central College Supriya Sihi

Houston Community College

Michael H. Silveira

Our Lady of the Lake College

Michael G. Silvestri California Polytechnic State University, San Luis Obispo

Jan Simek

California Polytechnic State University, San Luis Obispo

Daniel A. Singleton Texas A&M University

Mark Sinton

University of Dubuque

Tara M. Sirvent

University of West Florida

Joseph C. Sloop

United States Military Academy

Julie Smist

Springfield College Michele L. Smith Georgia Southwestern

State University

Rachel Brown Smith Erskine College

Cheryl Snyder Schoolcraft College

Craig Sockwell Northwest-Shoals Community College David Soulsby

University of Redlands

Teresa Speakman Golden West College

Gary Spessard St. Olaf College Wayne M. Stalick

Central Missouri State University

Sonja Stampfler

Kellogg Community College

Laurie Starkey

California State Polytechnic

University, Pomona Richard Steiner University of Utah Ralph Stephani

St. John's University

Donald Stierle

Montana Tech, The University of

Montana

Charlie M. Stinson, Jr. Talladega College

Charles Sundin

University of Wisconsin,

Platteville

Elizabeth Sutton

Campbellsville University

Paris Svoronos

Queens College, CUNY

Everett Shane Talbott

Somerset Community College

Ann Taylor Wabash College

Richard E. Thompson Louisiana State University,

Shreveport

Marcus Thomsen

Franklin and Marshall College

William N. Tinnerman University of St. Thomas

Rod Tracey

College of the Desert

John E. Tramondozzi

Curry College Eric Trump

Emporia State University

Margie Tucker

The University of Virginia's College,

Wise

Fred A. Turner Roosevelt University Timothy L. Vail

Northern Arizona University

Simon van Dijk Trinity University

Mary Vedamuthu

Missouri Baptist University

Dianne C. Veith

Delgado Community College

Andrea Wallace

Coastal Georgia Community College

Richard Wallace

Armstrong Atlantic State University

Carl Wamser

Portland State University

Philip Warner

Northeastern University

Darrell Watson

University of Mary Hardin, Baylor

Carolyn K. Weinreb Saint Anselm College R. Marshall Werner

Lake Superior State University

Judy Westrick

Lake Superior State University

Thomas Whitfield

Community College of Rhode Island

Arlon A. Widder

Georgia Perimeter College

Ron Wikholm

University of Connecticut

Michael Wiley

California Lutheran University

Anne Wilson Butler University Marie Wolff

Joliet Junior College

Stephen Woski University of Alabama

Linfeng Xie

University of Wisconsin, Oshkosh

Mamudu Yakubu

Elizabeth City State University

Ted K. Yamada Santa Ana College

Mingdi Yan

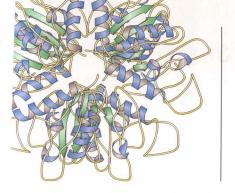
Portland State University

Burl Yearwood

LaGuardia Community College

Hua Zhao

Savannah State University


Author royalties from this book are being donated to the Cystic Fibrosis Foundation.

Brief Contents

1	Structure and Bonding 1			
2	Polar Covalent Bonds; Acids and Bases 35			
3	Organic Compounds: Alkanes and Their Stereochemistry 75			
4	Organic Compounds: Cycloalkanes and Their Stereochemistry 111			
5	An Overview of Organic Reactions 141			
6	Alkenes and Alkynes 179			
7	Reactions of Alkenes and Alkynes 221			
8	Aromatic Compounds 267			
9	Stereochemistry 319			
10	Alkyl Halides: Nucleophilic Substitutions and Eliminations 363			
11	Structure Determination:			
	Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet Spectroscopy 415			
12	Structure Determination: Nuclear Magnetic Resonance Spectroscopy 455			
13	Alcohols, Phenols, and Thiols; Ethers and Sulfides 497			
	A Preview of Carbonyl Chemistry 547			
	A Preview of Carbonyl Chemistry 547			
14	A Preview of Carbonyl Chemistry 547 Aldehydes and Ketones: Nucleophilic Addition Reactions 557			
14 15				
	Aldehydes and Ketones: Nucleophilic Addition Reactions 557			
15	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601			
15 16	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633			
15 16 17	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681			
15 16 17 18	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735			
15 16 17 18 19	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735 Biomolecules: Amino Acids, Peptides, and Proteins 777			
15 16 17 18 19 20	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735 Biomolecules: Amino Acids, Peptides, and Proteins 777 Amino Acid Metabolism 817			
15 16 17 18 19 20 21	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735 Biomolecules: Amino Acids, Peptides, and Proteins 777 Amino Acid Metabolism 817 Biomolecules: Carbohydrates 851			
15 16 17 18 19 20 21 22	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735 Biomolecules: Amino Acids, Peptides, and Proteins 777 Amino Acid Metabolism 817 Biomolecules: Carbohydrates 851 Carbohydrate Metabolism 891			
15 16 17 18 19 20 21 22 23	Aldehydes and Ketones: Nucleophilic Addition Reactions 557 Carboxylic Acids and Nitriles 601 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions 633 Carbonyl Alpha-Substitution and Condensation Reactions 681 Amines and Heterocycles 735 Biomolecules: Amino Acids, Peptides, and Proteins 777 Amino Acid Metabolism 817 Biomolecules: Carbohydrates 851 Carbohydrate Metabolism 891 Biomolecules: Lipids and Their Metabolism 927			

Key to Sequence of Topics (chapter numbers are color coded as follows):

- Traditional foundations of organic chemistry
- Organic reactions and their biological counterparts
- The organic chemistry of biological molecules and pathways

Contents

1	Structure	and	Bonding	1
•	otractare	unu	Donaing	

- 1.1 Atomic Structure: The Nucleus 3
- 1.2 Atomic Structure: Orbitals 4
- 1.3 Atomic Structure: Electron Configurations 5
- 1.4 Development of Chemical Bonding Theory 6
- 1.5 The Nature of Chemical Bonds: Valence Bond Theory 10
- 1.6 sp^3 Hybrid Orbitals and the Structure of Methane 11
- 1.7 sp^3 Hybrid Orbitals and the Structure of Ethane 13
- 1.8 sp^2 Hybrid Orbitals and the Structure of Ethylene 14
- 1.9 *sp* Hybrid Orbitals and the Structure of Acetylene **17**
- 1.10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur 19
- 1.11 The Nature of Chemical Bonds: Molecular Orbital Theory 21
- 1.12 Drawing Chemical Structures 22

Lagniappe: Chemicals, Toxicity, and Risk 26

Summary 26

Exercises 28

2 Polar Covalent Bonds; Acids and Bases 35

- 2.1 Polar Covalent Bonds: Electronegativity 35
- 2.2 Polar Covalent Bonds: Dipole Moments 38
- 2.3 Formal Charges 40
- 2.4 Resonance 43
- 2.5 Rules for Resonance Forms 45
- 2.6 Drawing Resonance Forms 47
- 2.7 Acids and Bases: The Brønsted–Lowry Definition **50**
- 2.8 Acid and Base Strength 51
- 2.9 Predicting Acid—Base Reactions from pK_a Values 53
- 2.10 Organic Acids and Organic Bases 55

65

2.11	Acids and Bases: The Lewis Definition 58
2.12	Noncovalent Interactions between Molecules 62
	Lagniappe: Alkaloids: Naturally Occurring Bases
	Summary 66
	Exercises 67
Orga	anic Compounds: Alkanes
	Their Stereochemistry 75
3.1	Functional Groups 75
3.2	Alkanes and Alkane Isomers 82
3.3	Alkyl Groups 86
3.4	Naming Alkanes 89
3.5 3.6	Properties of Alkanes 95 Conformations of Ethane 96
3.7	Conformations of Other Alkanes 98
	Lagniappe: Gasoline 103
	Summary 104
	Exercises 104
Orga	anic Compounds: Cycloalkanes
	Their Stereochemistry 111
4.1	Naming Cycloalkanes 112
4.2	Cis—Trans Isomerism in Cycloalkanes 115
4.3	Stability of Cycloalkanes: Ring Strain 118
4.4	Conformations of Cycloalkanes 119
4.5 4.6	Conformations of Cyclohexane 121
4.7	Axial and Equatorial Bonds in Cyclohexane 123 Conformations of Monosubstituted Cyclohexanes 126
4.8	Conformations of Disubstituted Cyclohexanes 128
4.9	Conformations of Polycyclic Molecules 131
	Lagniappe: Molecular Mechanics 133
	Summary 133
	Exercises 134
An C	Overview of Organic Reactions 141
5.1	Kinds of Organic Reactions 141
5.2	How Organic Reactions Occur: Mechanisms 143
5.3	Radical Reactions 144

5