INCLUDES

FREE
NEWNES ONLINE

MEMBERSHIP

DIGITAL MEDIA
PROCESSING

DSP Algorithms Using C

* Streamline your programming with decreased algorithm
development times

e Covers all the latest algorithms needed for constrained
systems

e Case studies on digital communications, automotive
ADAS and infotainment systems, and medical imaging
demonstrate real-world applications

Hazarathaiah Malepati

Digital Media Processing
DSP Algorithms Using C

Hazarathaiah Malepati

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD s PARIS e SAN DIEGO
SAN FRANCISCO e SINGAPORE e SYDNEY & TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400
Burlington, MA 01803, USA

The Boulevard, Langford Lane
Kidlington, Oxford, OX5 1GB, UK

Copyright © 2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Malepati, Hazarathaiah.

Digital media processing : DSP algorithms using C / by Hazarathaiah Malepati.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-85617-678-1 (alk. paper)
1. Multimedia systems. 2. Embedded computer systems—Programming. 3. Signal processing—Digital techniques.
4. C (Computer program language). L. Title.

QA76.575.M3152 2919

006.7—dc22

2009050460

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our website at www.elsevierdirect.com

Printed in the United States
1011121314 10987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID oo Foundation

International

This book is dedicated to my late father
Mastanaiah Malepati, whose vision and hard
work shaped my career a lot.

Preface

The title of this book could well have been Digital Media Processing Algorithms: Efficient Implementation
Techniques in C, as it is not only about digital media processing algorithms, but also contains many implementa-
tion techniques for most algorithms. The main purpose of it is to fill the gap between theory and techniques taught
at universities and that are required by the software industry in the digital processing of data, signal, speech,
audio, images, and video on an embedded processor. The book serves as a bridge to transit from the technical
institute to the embedded software development industry. Many powerful algorithms in current cutting-edge
technologies are analyzed, and simulation and implementation techniques are presented.

Digital media processing demands efficient programming in order to optimize functionality. Data, signal,
image, audio, and video processing—some or all of which are present in all electronic devices today—are
complex programming environments. Optimized algorithms (step-by-step directions) are difficult to create, but
they can make all the difference when developing a new application. This book discusses the most recent
algorithms available to maximize your programming, while simultaneously keeping in mind memory and real-
time constraints of the architecture with which you are working. General implementation concepts can be
integrated into many architectures that you find yourself working with on a specific project.

My interest in writing a book on digital media processing algorithms derives from reading literature in the
field and working on those algorithms. This book cannot replace the literature on the background theory related
to the algorithms; in fact, what is written here is largely incomplete without it. Although I do not rigorously
discuss the theory and derivation of equations and theorems, a brief introduction and basic mathematics are
provided for most of the algorithms presented. '

Typically, developers of embedded software modules want to know the basic functionality of an algorithm and
simulation techniques, in addition to whether any techniques are available to efficiently implement a particular
algorithm. Most developers are proficient with equations and algorithms as a result of university training; however,
the efficient implementation of such algorithms requires industry experience. But employers, of course, expect
developers to immediately begin work. Often they provide training for writing quality software, but not for
writing efficient software. Software engineers learn how to do this in time, such as during the course of working
on a few efficiently implemented modules or observing a senior engineer’s implementation methods. Many such
techniques to efficiently simulate and implement digital media processing algorithms are described in this book.

Today many algorithms are available on the Internet, and the software for a number of them is available in
the public domain. But the information available on the web is theory oriented, and we may obtain only pieces
of the software here and there and not the complete solution. Sometimes, we can obtain the complete software
for a particular algorithm that works well, but it may be inefficient for use in a particular project. Consequently,
users have to enhance software efficiency by purchasing it from a third-party source. What’s here provides the
information needed to develop efficient software for many algorithms from scratch.

The book is aimed at graduate and postgraduate students in various engineering subdisciplines and software
industry junior-level employees developing embedded systems software. Only college-level knowledge of math-
ematics is required to understand the equations and calculations. Knowledge of ANSI C is a prerequisite for
this book. Knowledge of microcontroller, microprocessor, or digital signal processing (DSP) architectures will
provide an added advantage so that you can understand implementation skills a bit faster.

Unlike other DSP algorithm books that concentrate mainly on basic operations, such as the Fourier transforms
and digital filters, this book covers many algorithms commonly used in media processing. For most of them, this
book provides full details of flow, implementation complexity, and efficient implementation techniques using
ANSI C. In addition, simulation results are provided for selected algorithms.

This book uses the Analog Devices, Inc. (ADI) Blackfin processor (BF5xx series) as the reference embedded
processor, and it discusses implementation complexity of all algorithms covered with respect to this amazing

general-purpose DSP processor. The Pcode notation (meaning pseudocode or program code) is used to flag
simulation code.

x Preface

The availability of test vectors is very important for testing the functionality of any algorithm. Test vectors,
look-up tables, and simulation results for most of the standalone algorithms described in this book are available
on the companion website at www.elseévier.direct/companions. In addition, a final part, Embedded Systems, can
be found there along with Appendices A and B, References, and Exercises.

Disclaimer

An algorithm can be implemented on an embedded processor in more than one way. Performance metrics vary
according to implementation method. Sometimes there may be a flaw in a particular implementation of a given
algorithm, even though we get the best performance with it. It may not be possible to test rigorously for all
possible flaws in a given time frame. The program code provided in this book is tested for only a few cases, and it
provides selected ways of implementing algorithms and corresponding simulation code. The code may contain
bugs. In particular, cryptographic systems are very vulnerable to changes in algorithm flow and implementation
as well as software and hardware bugs. Neither the author nor the publisher is responsible for system failures
due to the use of any of the techniques or program codes presented in this book. In addition, a few techniques
provided may be patented by either ADI or another company; check with the patent office before attempting to
incorporate any of the implementation methods discussed when developing your own software.

Acknowledgments

I am very thankful to Analog Devices, Inc. (ADI) and its employees for giving me the opportunity to write this
book. ADI is a great place to work and to achieve career goals.

In particular, I am very much indebted to Yosi Stein and Rick Gentile, without whom I may not have succeeded
in completing this book. The theme for the book originated while working with Yosi at ADI. My dream of writing
it came true with the constant support and encouragement I received from Rick Gentile. I am proud to say Rick
and Yosi are the heart and soul of this book.

It is with great pleasure that I thank Boris Liberol for reading every page and providing material on loop-
filter and motion compensation for the video coding chapter; Chalil Mohammed for providing sections for the
audio coding chapter; and Gabby Yi for providing material on motion estimation. David Katz and Rick Gentile
generously gave me permission to take a few sections from their book, Embedded Media Processing.

I thank Rick Gentile, Pushparaj Domenic, Gabby Yi, and Bijesh Poyil for reviewing selected sections, and
external reviewers Seth Benton and Kenton Williston for reviewing some portions of the material and for giving
valuable suggestions for improving the book. I thank Goulin Pan, An Wei, and Boris Learner for spending their
precious time with me to clarify a few digital media processing concepts.

I am especially grateful to S.V. Narasimhan, V.U. Reddy, and K.V.S. Hari for their guidance. It is with them
that I first began my journey into digital media processing.

I thank N. Sridhara, P. Rama Prabhu, Pushparaj Domenic, Yosi Stein, Joshua Kablotsky, Gordon Sterling, and
Rick Gentile for giving me a chance to work with them as part of their team.

I offer my heartfelt thanks to Analog Dialogue editor Scott Wayne for forwarding this material to Newnes—
Elsevier, and to acquisitions editor Rachel Roumeliotis at Newnes for accepting and preparing the contract for
this book. I am very thankful to this book’s project manager Marilyn E. Rash, copyeditor Barbara A. Kohl, and
proofreader Samantha Molineaux-Graham for enhancing the material here by far from my original writing.

Last, but not least, I thank my family for their support and encouragement during this intense period of
brainstorming: my mother Mastanamma for her love and sacrifices and the effort she made in shaping my career;
my sister Madhavi, brother-in-law Venkateswarulu, father-in-law Guruvaiah, and mother-in-law Swarajyam have
been very supportive and taken care of family responsibilities while I was engaged in this endeavor.

Above all, I would like to thank my wife Sunitha Rani for her love, patience, and constant support throughout
this project, and my beautiful daughter Akshara Mahalakshmi, who stayed with her grandparents while I was
writing this book. I missed her a lot and hope she will forgive me for not being with her during this time.

NOTE: The correct URL for the companion website is:

www.elsevierdirect.com/companions/9781856176781

Contents

PREJIDE ouvioisinionn omnsommdinsaamanie s hnmin el oin oo sxmSRaby sis aess 318 slosipiliomsls s oaiam oalialeitS b ix

Chapter 1 Imtroductionceeeeeeieccoteeccracesacoccsccsscascscosasssssessasnessasssssese 1
151 ‘Digital Media PIOCESSING: ..;.isumsniss s6's susasiamsimms o6 o sostspmmmalsss s s st v ve s siae s s s |

12 * Media-Processing ATGOTININS . «.ccoossiosemnssisssssvemmamen savs sobasaenass 568 wuaaiosss 5653 sl oasm soeas 2

1.3 Embedded Systems and APPLCAtIONSccuuieriettieiuenneneerieenennieeessersennseeseanessnssesssas 4

1.4 Algorithm Implementationion DSP ATchiteCures s ueiub ceisasilon s boioismiiioreis o « sl d dbran o 5
Part 1 Data Processi”g L B B B B B L B B B L B B B B R B B L B B B B B B B B B B L B B B BB B BB R 13
Chapter 2 Data SECUIIEY «.oceecesesrescssssassssssnosanssssasessessiassoessesssonsoronsisssaonsssnnse 15
P b) T D S T (GG S Y S S WSS S RPN .l 50 s i OO B SO S S iy o 15

242 = VInplelData EncrypionsAIGOEINT. . .. o woirithbes friumathn o vty Sy, o it RN 24

2.3 Advanced Encryption Standard.. «seciseimsesis dusstemmempss b B s v o 45 Srsun s sssteelassn e o g 37

24 Keyed-Hash Message Authentication COde. ss cusssissivessiisnsmss s suisadise stasiss s siodotasinsisis shess's 50

2.5 = Elliptic-Curve Digital Signature AIgOTIthii i« ;. . ccusessisossssmmsnsssss avmsmmsein s o s usnmim 45 o v 58
Chapter 3 Introduction to Data Error Correctioncoeeeeeuuneieeennieeennenaienennanns 87
20 DN D 11 1] T0) 11 SIS O S S R R R oy B B oo o S O E s oo B SR L s o T oo 87

322 Brror DetectionALGOmIIIS . .. cc.. . « « oo ol Skl sreiniermias ST o $4.8.515 .5, Flmisein 18 S1ST5]5 58013 .50 4TSNS 88

1 S 2 Faved N e T o it Rl Ao M St . g Bl s S0 o 7 el e M A A Sy AR e ety s 97

I B L o b A (AT BTG T 1 PO € EC S, | R oo e A O ¢ b 101

380 BEH Codes', <icuinsuiasmvasanms sovsesaonmmiilis Shsessamdasesine . 2 s s b e, 1o o W T | NS 108

A6 RBCOUES ocuemmiasmisammismmsion aas » sarsivisrsisamiale st bessmmeniers ST 5 o ST Aoamis o't ¢ st s ol I IRAR 112

37 Convolational CoBs .. s vicsmmmimis s « v wirvummnio dus o Aot s 5510 oA NSRS E1s 5 5 58 Flrre e I0RTE 5 3 STk ws Sia T S T 118

3.8 1 Trellis Coded ModUlatiDnL. ivee.s « e ioiosfoia sl slo/aiarag cleisimtsa A1 e s m RIeTere o oo R TR o 10 5 oo LA SRR 126

SO N D AT FOT I N, e Fs e vastaommearsgmnian e e o AT e R ettt e S 2 L L L N S 134

Lt h ORGP I FE S N SO, B B S ot AR M b e L e 136

% I B D] ST o s L DN, ST, SSRSRIRPITIRIINE o8 /b o o s e o HE S e e oo T e s 143
Chapter 4 Implementation of Error Correction Algorithmscoevvevvuniiiinnnnnieennnn. 155
A INBEENEOARS 2o s ctetlofirannmmonss s.vdduasmts it S i e I o s Sy RN 155

4.2 Reed-Solomon Error-Correction COdes «... . qewssmssssss sasasssmssns s assmsueiss semssssiss s dxanme 166

4.3 RS EBrasure COUCS :ocuinssmusiorsssssamonnnsss s anssnissesssss qusesbsnms s miassesmms 6555850500 48 nmresr 179

44 T Vterhi PDECOAET . e it 5557 eimreseiions 5 50 ool den s STER e Sie o SO oML e R 190

A S E S TATB0 COAEE v . .. ST T T e liiorin o o wiviucainia siaiainie o/& ki isteloter o 5 olol ora o1 Marbtoie = slagaieTe gt £ eiatele oirie aTE s o o S 199

S e 5 D 5 B 70T [T e W N O™ S S | Nkt e R O LR A S I I s 216
Ohapter S Lossless Datia COMPIBSION ovcv5r vondestsmnvinsasdtiBed Tose s st ane i BT/ Sls PITESS 225
5.1 EnGOPY CoOINEL. . % oo Bl e oo Seivieionn o bTalo/sToia sais wis ole]ot aiai i afem ntatmsaleleressisia el mie ate e istole oroinle oi8 oot TS 226

5.2 Vamable Lenpth IDeCOMIBE . oy swes v b il ascs Nemams Snaie 8o oo s DT s o 5 e e 231

535 H264 VILC-Based BOttOpY (COUITIE «...cx - s 1+ secimminimnsio as sieiojotassiasss sioraie s ste siqln iers sbarsiaissalsisim Sale soas i irate 242

S L (BT Lo - N N A P s 260

5.5 Context-Based Adaptive Binary Arithmetic Codingc.ooiiiiiiiiiiiiiiiiiiiiiiieieneeennns 269

vi Contents

Part 2 Digital Signal and Image Processingcccocevieeeeiennn.... 283

Chapter 6 Signals and Systems.ccoiiiiiiiiiiinnnnneeneueteteetetttitetiecitiisesenons 285
(o I £ et o (o] 1 B (O Gioy b b s S W o O s ol 0 S R e R s 285
6.2 Time-Frequency Representation of Continuous-Time Signals ...t 299
6.3 Samphing of Confiuous-TIne Signals.....ciccoervsnyessusbiaadon s ssssseaans oo swubsessais s o colHHE 304
6.4 Time-Frequency Representation of Discrete-Time Signalsccoeviiiiiiiii ... 310
6:5. Linear TIMe-InvVariant SYSIEIMS .« scsossas - cones domms vs o shoumaness s s ssansasmss soee sasmmsis s owaes 312
6.6. 'Generalized FOUriSr TRANSIOTINS <« xouicive s o ¢ oo siaidmos oo s6m asiwvin 616 32w /smnian s s s s 8,8 45,65 » S sfosfot 317
Chapter 7 Transforms and Filtersccccceenueuenniiiiiescastsccssceccanescssssanscccanss 321
Tl = “FastIFOUtier TralSTOIML - < s c s o snsismimes 6 s sussmamins s s somsREsans o 08 seaaiaisios s sisaaisaisws s o3 s o dalslin 321
7.2 v Discrete Cosineg TranSEOII «iv: i s aimsiws o5 o5 siuammnes i s sammssbon s ile s o haasrtwssisesrisil s iamas 334
.3 BAHCEIBASTOR Vi o o o e miaatics 5 wiolbumimiosiion 5 « 5 Sce Fealuseluels + 3 SV HR IS LD A i SIS 3 70 b8 lokele s oeoPo¥ FTE eI T e 345
e R e TR pISC-RESPONSSTHITETS], ol 5 muwis o o o sdiiimitie. oot AN NEEI 2oc vior it Brotalois s . bl Tl Ty Ruod o T VTS 352
el Infimiempulse=RespOASERAIEISIT. Lo o v o v ws oo stine et e N N o L R s DUl ety ot IR 363
Chapter 8 Advanced Signal Processingccceeevseisescsassesesansossscsssssssssssenscose 381
R A ADTIVE SITMAl P IOCES ST, feeraraisiarass o s aromms s ety Lo e D A e e eca s AT B« AT 381
82 Miultirate S1onaliPrOCCSSINDE . s sisns v onaslanmi e das Soissime e e S SO s s e STk e SRS 405
831 WWavelet Sional ProCBSSIND: < cos.diamumssomisnasbn v b siaiasisod el s danisuton Bl niuslseusi s o s w s nbtt 415
8.4 -Simulation and Implementation TeChNIGUES . .t 15 : sisoniohisb s ssbueeissisns s o s wasuiosiun s s s e sesslspenns 431
Chapter 9 Digital CoOMMUBICAIIONS. . . .« .evoau s o ivsnussnsasbasonisass s n s vevshansinvassss os vavn 437
O = R ITOAOCHON s srisnisss s s bsniins Seles's oo s ey el ale s STt s eeis e/ 25 6 5 3 8 e wis T ls & 5.0 BRI 437
9.2/' - ‘Single- and Multicarrier Communication SYSIEIS iccus s s nisssanss s s anosmssans cnsssanossssss 454
9130 (Channel Bstimation ..l Joifadoh v5s o 25 oo imiieisie Beie/ore sl Rreies TEITeh fyateisle S o v/nio haiaiotosioislers oim n sieieioio e elaTE 464
O AR CINE N UAT AR IIONIE: S v taollt 2 siorninin s 2 s srisiagel s oo AUTNNEINSRPNIING. 1, . SRR, Ly L SRR 472
S SV CIEONIZ AR QR « oot dtlls Shenersloimssvinsmiss saes o 4 sracs 2vis OIS 7S el e OV At LLUS rovele POTS i W L 491
9.6 Sunmulation TeChRIQIES . -« L cususamsms s s 4o soamsmiseipsessassnm e s oandisossess o § oo anhbasmss daswsesssale 504
Chapter 10 Image Processing TOks «.....ovesosves vesvsiaweis sonenssnsevnos sis swnnagmenvabssss v asls 509
ML OO C OV S IO s s s 315 Mot » s1o0s savaiasigeyasn.sssroni s Bmimyoscistes e ey orafor o o g et Ble bt s s S s Lo e 509
1D2= ColorENhANCEINEIE st s ks asmonsns s iwismmssmis saninss@smams s lsnamsrons 5 sasmian s s st s s 510
10.3:. Brighthiess and/ Contrast ADJUSTIEIT . oo «umies s o.56 shamoimisnsian e simsssssss s m s 53 sosibm ks S 6 saesise Sne 510
10.4 Edge Enhancement/Sharpening Of EAgesccciioeennienummimeronecemeiotocncneercsocecanneas 512
105 TMAge PIHCIING .. .ol i s erisTosinis wie s o emioiorers-oioisiniis scscaiaistore ool o sSTRstoa Hoie 5o s Vo oo bt o s e ol ormicre T 512
L0 G B Oe IS CION .25, e alhie o psisreisisrams o s s sainicsssisiain.s sivgose oo o T Aals oy s AT B e L I s Ot SNl 513
L0 AT EES C Al o o B T arminieisinss 5 .08 sippmisinimssouts S e SR a e s S A e e e s S ST 525
10:5 1" Brosionand DIBHON 5ok s vdsssins s s sssirm s J5m it mss amonmiss s s o s pmaicins s oy iRl e s Sl 931
JOU IS COTIET RN s dasrnmis & oo soamsvasss o Banenisonn s SRS eass § & 4o wsmeeains 55 asAn' 534
L0 FHoweh TraAnSEOTIN. .i-od o5 50 4 s emciornsto o STeje sioibiaioie Bl m o oioisi o e inl T STt B T ePacerd Tl il sl TSk o e RS 536
10.11 Simulation of Image Processing TOOLSuiiiiiiiieuiiittiiiiiitieeeiiiiaeieeeaaiiaeaeenss 540
Chapter 11 Advanced Image Processing Algorithmsccovvvniiiiieniiiiiiennnnennnnns 553
IZE INAage ROTAGON i nadee s ciiaimhmmess chummmmmeeiomsibmas Do sierceiatsieiaiod® v i /s sniaiaialante sl i wzisss asas's e 553
2T Dagital Tmage SEADIMITAIION! (2t vre wooe svomnsemes oo swrmmsnnhmes s samesinnis s s mmaesaamess o 562
3 plrace OB eCtS D Cte GO IS Hesine s s » < v smermsmms srarva sl so o ereya s ae s 5w 3 (P S e Raiatb e o el T 568
P14 2D ImAge BAEES oo ox snmion ssieniass s55nmsminnsss o300 wesssossssme@ension s 55 s s opmans vsiess oonimssiass s nas 575
e FiSheyerDIStortiOn OO OGN fomu v i s 1aas miassdns 350 % il oINS Bves eren s its .5 Ao e e sla s e e e 581
116 “TMAage COMPIESSION ©..c.o 0 s S sleie st o+ winamiioia's ™ aimiafors Sifors ol Slore eleoieich o o o o o o e telloi oo o o imreieta srertis olnfoleh 584
Part 3 Digital Speech and Audio Processing.............ccccveveuivuncnnenn. ..593
Chapter 12 Speech and Audio PrOCESSING «.c.eocovoevsnssessonessdibininasssvandans sansnsansniins 595

12.1 Sound Waves and Signals

Contents vii

12.2 Digital Representation of Audio Signalsoooiiiiiiiiiiiiii 596
12:3% = Sigtial Processinmwith Embedded ProCessor. .o o . co sinae s i e s o s v o 0his Suce aioisia sTolsloblolo s ord 608
124 Speech COMPIESSION .. oscones s s osssiarssns envanassssns os ssaakasinrusvesavaoaas bnsrdessnssao dsfuiiss 611
125 VoIP and JIttel BUTTET «. . ouss sonhismmus o s as simaiosse s saisuaisas s o s o o abialolioln s 6105 gadiei s selas as walnis 626
Chapter 13 Audio Coding........cceceeeeeeceecossscncscsssssscssssssasasessnscsssssssscsasasansas 637
13.1 Psychoacoustics and Perceptual Codingcoorsmnoncvnsinsvmssassssvessnvasssss ioieess 637
132 - A0S gHAlS GO oo - o o5 - o hentt crearoeieiopsiaiors STt o BB ST o St o oo Voo St 1 08 PRI 642
13.3 MPEG-4 AAC COAEC .. nuuetnnieeeitiinitie ittt e ittetitareeersseeianeeeeiasseennnnesans 647
134 'Popular AUdI0 COAEOS \ics v vamsnsisneiissmmamsinnbisase sebi st st anianbsoB s danwess o Al 651
135 "AUdio POSEPTOCESSINE ouris swvsismamssimes s s wbanns e s s aiaraisin Se ton s als S5 slo & Saiarara siowin blelals ak Tois bzt 653

Part'4 ‘Digital Video Processing oeeonsess'edb8idiisstosionsains orsuiesnany QL

Chapiter 14 -Nideo Coding TERANARY .. o 5o o0 snvs vasns oo r5daslibnbin st sab i i verlbns Pad i3 659
14T TINIROdUCHION. .. o e e orn 5 Slolbatorm o e soncs olhmrotostio s ale s o SONNEIIN. SR ol sttt o erelsiala i N G s 659
1450 Wideo CoditiZ BaSICE v\ ah P eripn o st st et b e S L o SN 8, S ET PR Mty 661
|5 B o | 2 RO e B e (sl S S ol oy e 2. = s A) = Lk o e B o, o OO o gl e 675
144 “HL.264 DECOAET . .vimnsiviss s ssmmisfmprias s s s oo aiusmsisiese s soimsinnnisaliieslasm il o saesbantus 14 T aaa it 681
14.5 Scalable Video COdiNg : ; <« vuuusmssssss s omubsunesonsssmmnmsmtienss samsns sy asmsamess s5essssmmmtnsas o 709

Chapiter 15 Video Post-ProcesSilg coesussssvonsivssssisansnspsosssdosvonss soesmdssesniiosesss 713
I NGl eo O nality VI C AR C TG . f7. S5 s el aaeinle el e L 1 AT o0 icaro tor N 713
| T T et T e ey e S o e A S) e o e B o7 e e L Sl O B H el Sl i g o 713
15:3 NIdeo PLOCESSING v vsie s ¢ biahismoes s iamssmmmat s s s ST e b i Ml b ais v s sl e oo Satesaial 728

15.4 Video Transcoding

viii Contents

On the Website

Part 5 Embedded Systems

Chapter 16 Embedded Systemscoeeeuinninnnieieeiieirisiecttencncenciccesosccnenneens 1
G el E £ 51 VTl o 1 M e D e M, o il e T = S0 Sl R BT o s ot s s e s o e 1
16:2 Bmbedded Systemm COMPONEIIES io.bivs « uumemennts s s snleiinisien ¢4 4 s samemiss s vos samsnmasy sl s soonpioloatsionsis 1
16:3" "Embedded Video Processing and SYyStemUISSUES . i+ fiaun v v swaoramnion s i aasabsssorbis s s s susisreis/as sy 20
16:4 - Software—Hardware Partiioning ...« ¢« ; cuaden e s s vamsamssss 5 562 mtasinsis s o dlosiisssinss s s s 6 asemsiomis ss 3
16.5 Embedded Processors and Application Requirementscoiviiiiiiiiiiiiiiiiiinnnnnn. 39

Chapter 17 Embedded Processing Applications.ueueiiiiiniiiiiiiniieiinenniaennnnn. 1
1 I AL O OV E PP CAT OIS VNS il 12 T a0 oD e el VT A oA IR oLt S W 1
172 Video Surveillance SYSIEME & e » <o slussemsst 5o s o s s anieislonnss s s s siapelsisae s o s/ aaiololioinrt buemes 8
[7:3 | Portablé Entertaitiment SYSICHNS .5 s < ssmaonms 25 s st b EoRAIEaaaEe o | Shamasise o 6§ S sl 11
74 Digital Communications):. ... -l Ll kb e e s ek e s e 12
(FEy D ital Camera IMage PIPel e t8ou. b 5.t vt il Gl s o le ot B gt S L S s S 20
17.6 Homeland Security and Health Careooiiiiiiiimiiiiiiiiiiiiiiiiiii i iiiiiieeieeeeeenans 22

Appendix A Reference Embedded Processorcouuuieiieuiniieiinnieennnnnnneanennns 1
Al Blagkfin ArchiteCtURe ONVEIVIEW i« s susismisn w5 doeitioss 455 8 iaeisien/sls 2 516 SRR Sl o s v s aTaR 3 5 45 0H59 1
A2: Overview of Blackfin INSEUCHON SCL. - s s s » 5 isisin nrisisle s SIE-HER £H 5 5o sebicle 0 5 Saltsmesints Shirs B 12
An3 Blackfin DDA e e e v o B iararaieie s 3 E e it onle e a SR o a1 5 o el onntn o1 315 8 e o e et AT 23
A.4 Cycles Estimation with Blackfin ... 25

Appendix B Mathematical Computations on Fixed-Point Processorsccceeevevnniiieennns 1
B.l. Numeric Data Fixed-Po1nt COMPULIIIE «nssb sols s s isislinote s s s iaftsnieis sess s aasmbie s bs s sy s oo s 1
B2 GAlDIS FIRIAS &1 cis sn s st s s 35 8 mi6iahios & 78 ARATHEARA fe 2 AT s R s < s]s 5,592 0 $ibis e TS Ao o b g 10

ADPORAIE € LOOK-UP TABIES < .o v vvcoenivisvanns sovsvesviosbonss s e v ve s oo ntssinsednsonsins swamuwais 1

IRETBIBICES o cnty'ioovs swws vile SN Db waiBshliond smaniws’s ola s Sio b Alih s GADE Gn 418 Ve oLt s o bW B0 b insur U e reowrs Wk 1

EXCICISES. < s srwiisivnse sisisio.osis oo v s stoliin o1Tsol6ra; .51 326 wioe o1a15i0 oo 8010 0016, 876 o1oTa orm Sibreb om0 n mie S miain sinoos siornTois S o1ots 1

CHAPTER 1

Introduction

1.1 Digital Media Processing

Digital media processing as it is currently understood and further developed in this book is described in the
following subsections.

1.1.1 Digital Media Defined

In this book, media comprises data, text, signal, voice, audio, image, or video information, and digital media is
the digital representation of analog media information. In our daily lives, we typically use many types of media
for various purposes, including the following:

« telephoning (voice)

« listening to music (audio)

» watching TV (audio/video)

» camera use (image/video)

 e-mailing (text/images)

« online shopping (text/data/images)

» money transfer (text/data)

* navigating websites (text/image)

» conferencing (voice/video)

 body scanning with ultrasound and/or magnetic resonance imaging (MRI) (signal/image)
» driving vehicles using GPS (signal/audio/video), and so on

Applications that use media are continually increasing.

1.1.2 Why Digital Media Processing Is Required

In all of the previously mentioned applications, media is sent or received. As a sender or receiver, we typically use
the media (talking, listening, watching, mailing, etc.) without experiencing difficulties in perceiving (with our
eyes, ears, etc.) or delivering (talking, mailing, texting, etc.) the media. In reality, the media that we send or receive
passes through many physical channels and each one adds noise (due to interference, interruptions, switching,
lightning, topographic obstacles, etc.) to the original media. In addition, users may want to protect the media
(from others), enhance it (improve the original), compress it (for storing/transmitting with less bandwidth),
or even work with it (for analysis, detection, extraction, classification, etc.). Digital media processing using
appropriate algorithms then is required at both the transmitting and receiving ends to prevent and/or eliminate
noise and to achieve application-specific objectives mentioned here.

1.1.3 How Digital Media Is Processed

A software-based digital media processing system is comprised of three entities: an algorithm (that which
processes), a software language (to implement the processing), and embedded hardware (to execute the pro-
cessing). Examples of embedded hardware are digital signal processors (DSPs), field-programmable gate arrays
(FPGAs), and application-specific integrated circuits (ASICs). In this book, the Analog Devices, Inc. Blackfin

© 2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-678-1.00001-6 1

2 Chapter 1

DSP is the reference embedded processor (see Appendix A on the companion website) for executing algorithms.
The algorithms are implemented in the C language. Algorithm examples are discussed in the next section.

1.2 Media-Processing Algorithms

In this book, digital media processing algorithms are divided into four categories: data, signal and image, speech
and audio, and video. Each category of algorithms are discussed in great detail in various chapters of this book.

1.2.1 Data Processing

Digital systems handle media signals (e.g., data, voice, audio, image, video, text, graphics, and communication
signals) by representing them with 1s and Os, known as binary digits (bits). There are many advantages to digital
representation of signals. For example, providing integrity and authenticity to the signal using data security
algorithms becomes possible once the signal is digitized. It is also possible to protect data from random and burst
errors using data error correction algorithms. In some cases, it is even possible to compress the digital media
data using source-coding techniques to minimize the required data transmission or storage bandwidth.

Part 1 of this book covers the most popular algorithms used for data security, error correction, and compres-
sion. For all algorithms, a brief introduction, complete details of algorithm flow, C simulation for core algorithm
functions, efficient techniques to implement data processing algorithms on the embedded processor, and algo-
rithm computational cost (in terms of clock cycles and memory) for implementing on the reference embedded
processor ADI-BF53x (2005) are provided.

Chapter 2 is focused on the most widely used data security algorithms in practice. The algorithms covered
include triple data encryption algorithms (TDEA), advanced encryption standard (AES), keyed-hash message
authentication code (HMAC), and elliptic curve digital signature algorithm (ECDSA). In addition, cryptography
basics and pseudorandom-number generation methods are briefly discussed.

Chapter 3 discusses various data-error detection and correction algorithms. Error detection based on check-
sum and cyclic redundancy check (CRC) computation is discussed. Both block codes and convolutional codes
for error correction and corresponding decoding methods are discussed in detail. The algorithms covered
include CRC32, Hamming (N, K), BCH (N, K), Reed-Solomon (RS) (N, K) error correction codes, RS (N, K)
erasures correction codes, trellis coded modulation (TCM), turbo codes, low-density parity check (LDPC)
codes, Viterbi decoding, maximum a posteriori (MAP) decoding, and sum-product (SP) decoding algorithms.
Chapter 4 discusses efficient simulation and implementation techniques for all error correction algorithms
discussed in Chapter 3.

Widely used data entropy coding methods are discussed in Chapter 5. Variable length codes and arithmetic
coding approaches for entropy coding are discussed. The algorithms covered include the MPEG2 VLD, H.264
UVLC and CAVLC, JPEG2000 MQ-coder, and H.264 CABAC.

1.2.2 Digital Signal and Image Processing

We process raw signals using signal processing algorithms to get the desired signal output. Signal processing algo-
rithms have many applications—telecommunications, medical, aerospace, radar, sonar, and weather forecasting,
to name the most common. Part 2 of this book is dedicated to signals and systems, time-frequency transformation
algorithms, filtering algorithms, multirate signal-processing techniques, adaptive signal processing algorithms,
and digital communication algorithms. The later chapters of Part 2 are devoted to image processing tools and
advanced image processing algorithms.

In Chapter 6, background theory of digital signal processing algorithms is discussed. We will cover signal
representation, types of signals, sampling theorem, signal time-frequency representation (using Fourier series,
Fourier transform, Laplace transform, z-transform, and discrete cosine transform [DCT]), linear time invariant
(LTT) systems, and convolution operation.

Signal time-frequency representation and signal filtering are discussed thoroughly in most digital sig-
nal processing textbooks, including this one. In Chapter 7, we discuss implementation aspects of the fast
Fourier transform (FFT), DCT, finite-impulse response (FIR) filters, and infinite impulse response (IIR) filters.

Introduction 3

C simulation is provided for all algorithms. Comparative algorithm costs (in terms of clock cycles and memory)
for implementation on the reference embedded processor are discussed.

Chapter 8 discusses adaptive signal processing algorithms (minimum mean square error [MMSE] criterion,
least mean square [LMS], recursive least squares [RLS], linear prediction [LP], Levinson-Durbin algorithm
and lattice filters), multirate signal processing building blocks (e.g., decimation, interpolation, polyphase filter
implementation of decimation and interpolation, and filter banks), and wavelet signal processing (multiresolu-
tion analysis and discrete wavelet transform). The C fixed-point implementation of the LMS algorithm is also
presented.

Chapter 9 discusses the digital communication environment (channel capacity, noise measurement, modu-
lation techniques), single-carrier communication, multicarrier communication system building blocks (discrete
multitone [DMT] and orthogonal frequency division multiplexing [OFDM] transceivers), channel estimation
algorithms (for both wireline and wireless), channel equalizers (minimum mean square [MMS] equalizer,
decision-feedback [DF] equalizer, Viterbi equalizer, and turbo equalizer) and synchronization algorithms (fre-
quency offset estimation, symbol timing recovery, and frame synchronization). As most digital communication
algorithms involve basic signal-processing tasks (e.g., DFT, filtering), no exclusive C simulation is provided
for these algorithms. However, a few techniques to efficiently implement commonly used basic mathematic
operations such as division and square root on fixed-point processors are discussed, and C-simulation code is
provided for those basic operations.

Image processing plays an important role in medical imaging, digital photography, computer graphics, mul-
timedia communications, automotive, and video surveillance, to name the most common applications. Image
processing tools are basically algorithms used to process the image to achieve aims specific to the application,
such as improving image quality, creating special effects, compressing images for storage or fast transmission,
and correcting abnormalities in the captured image (sometimes the capturing device itself introduces artifacts
in the image due to hardware limitations or lens distortion). Image processing tools are also used in classifying
images, detecting objects in the image, and extracting useful information from captured images.

Chapter 10 is focused on discussing and simulating widely used image processing tools such as color conver-
sion, color enhancement, brightness and contrast correction, edge enhancement, noise reduction, edge detection,
image scaling, image object corners detection, dilation and erosion morphological operators, and the Hough
transform.

Advanced image processing algorithms such as image rotation, image stabilization, object detection (e.g., the
human face, vehicle license plates), 2D image filtering, fisheye correction, and image compression techniques
(DCT-based JPEG and wavelet-based JPEG2000), are discussed in Chapter 11. The C-simulation code and
algorithm costs (in terms of processor clock cycles and memory) are also provided for image rotation and 2D
image filtering algorithms.

1.2.3 Speech and Audio Processing

Speech and audio coding are very important topics in the field of multimedia storage and communication systems.
Example audio- and speech-coding applications are telecommunications, digital audio broadcasting (DAB),
portable media players, military applications, cinema, home entertainment systems, and distance learning. Human
speech processing has many other applications, such as voice detection and speech recognition. Part 3 is dedicated
to discussion of algorithms related to speech processing, speech coding, audio coding, and audio post-processing,
among others.

In Chapter 12, we discuss sound and audio signals, and explore how audio data is presented to the processor
from a variety of audio converters. Next, the formats in which audio data is stored and processed are described.
Selected software building blocks for embedded audio systems are also discussed. Because efficient data move-
ment is essential for overall system optimization, data buffering as it applies to speech and audio algorithms
is examined. There are many speech coding algorithms in the literature and this chapter briefly discusses a
few methods. Various speech compression standards are also briefly addressed. Finally, the Voice over Internet
Protocol (VoIP) and the purpose of the jitter buffer in VoIP communication systems are discussed.

4 Chapter 1

Audio coding methods are discussed in Chapter 13. While audio requires less processing power in general
than video processing, it should be considered equally important. Recent applications such as wireless, Internet,
and multimedia communication systems have created a demand for high-quality digital audio delivery at low
bit rates. The technologies behind various audio coding techniques are discussed, followed by examination of
MPEG-4 AAC codec modules and encoder and decoder architectures. Various commercially available audio
codecs and their implementation costs (in terms of cycles and memory) are presented. Finally, we discuss a few
audio post-processing techniques for enhancing the listening experience.

1.2.4 Video Processing

Advances in video coding technology and standardization, along with rapid development and improvements of
network infrastructures, storage capacity, and computing power, are enabling an increasing number of video
applications. Digitized video has played an important role in many consumer electronics applications, including
DVD, portable media players, HDTV, video telephony, video conferencing, Internet video streaming, and distance
learning, among others. As we move to high-definition video, the computing bandwidth required to process video
increases manyfold, and more than 80% of total available embedded processor computing power is allocated for
video processing.

Chapter 14 describes video signals, and various redundancies present in video frames are explored. Video coding
building blocks (e.g., motion estimation/compensation, block transform, quantization, and variable-length coding)
are briefly discussed, followed by a survey of various video coding standards and comparisons with respect to
coding efficiency and costs. Computationally complex (high-cost) coding blocks are identified. Efficient ways
of implementing video coders are discussed, followed by an examination of the two most widely adopted video
coding standards—the MPEG-2 and H.264 decoder modules. Details of H.264-specific decoding modules (e.g.,
H.264 transform, intraprediction, loop filtering) are provided. Also discussed are a few techniques to efficiently
implement the H.264 macroblock layer. A scalable video coding (based on the H.264 scalable extension standard)
and its applications are discussed. Video processing, as stated before, when compared to other media processing,
is very costly in terms of computation, memory, and data movement bandwidths. Video coding and system issues
because of limited MIPS, memory, and system bus bandwidth are presented in Section 16.5 on the companion
website, along with the use of proper frameworks to minimize power consumption in low-power video applications.

Video data is often processed after decompression and before sending it to the display for enhancement or
rendering it suitable for playing on the screen. This part of the procedure is called “video post-processing.”
Chapter 15 is focused on video post-processing modules such as video scaling, video filtering, video enhance-
ment, alpha blending, gamma correction, and video transcoding.

1.3 Embedded Systems and Applications

Embedded systems enable numerous digital devices used in daily life, and thus, are literally everywhere. Embed-
ded computing systems have grown tremendously in recent years not only in popularity, but also in computational
complexity. In all the applications listed in Table 1.1, digital embedded systems process some form of digital
data. Digital media processing algorithms play an important role in all embedded system applications.

This book is focused on digital media and communication processing algorithms—that is, applications involv-
ing processing and communication of large data blocks (whether image, video, audio, speech, text blocks, or
some combination of these), which often need real-time data processing. For an application, we choose a par-
ticular embedded processor along with a peripheral set only after studying its capabilities to run the algorithms
of a particular application.

The last part of this book discusses embedded systems, media processing, and their applications. Embedded
systems have several common characteristics that distinguish such systems from general-purpose computing
systems. Unlike desktops, the embedded systems handle huge amount of data per second with very limited
resources (e.g., arithmetic logic units [ALUs], memory, peripherals). In most cases, embedded systems handle
very few tasks and usually these tasks must be performed in real time.

In Chapter 16 (see companion website), we discuss the important components of an embedded system (e.g.,
processor core, memory, and peripherals). Various types of memory and peripheral components are briefly

Introduction 5

Table 1.1: Digital media processing applications

Digital Home Telecommunications Consumer Electronics
AV receivers ADSL/VDSL Digital camera
DVD/Blu-Ray players Cable modems Portable media players
TV/desktop audio/video Wire/wireless smart phones | Portable DVD players
Sound bar IP phone Digital video recorder
Digital picture frame Femto base stations Personal GPS navigation
Video telephony Software defined radio Mobile TV

IPTV, IP phone, IP camera | WLAN, WiFi, WiMAX Bluetooth

Door phone Mobile TV HD/ANC headphones
Smoke detector Radar/sonar Video game players
Network video recorder Power line communication | Digital music instruments
CD clock radio Video conferencing

FM/satellite radio

Automotives Industrial Medical

Advanced driver assistance | Power meter Ultrasound

Automotive infotainment Motor control CT, MRI, PET

Digital audio/satellite radio | Active noise cancellation Digital x-ray

Vision control Barcode scanner Pulse oximetry
Bluetooth hands-free phone | Flow meter Digital stethoscope
Electronic stability control Oscilloscope Blood-pressure monitor
Safety/airbag control Security Lab diagnostic equipment
Crash detection Surveillance IP networks Heart rate monitor

Fingerprint biometrics

Video doorbell

Video analytic server

discussed. The necessity of software—hardware partitioning of embedded systems to handle complex applications
is discussed, as well as possible ways to efficiently partition such a system. Finally, we discuss future embedded
processor requirements to handle very complex embedded applications.

Chapter 17 (see companion website) briefly discusses various applications. Different embedded applications
use different algorithms. The processing power and memory requirements vary from one application to another.
We briefly talk about various modules present in a few embedded application sectors. The applications covered
in this chapter include automotive, video surveillance, portable entertainment systems, digital communications,
digital camera, and immigration and healthcare sectors.

1.4 Algorithm Implementation on DSP Architectures

In Section 1.2, various algorithms that are playing a critical role in diverse applications were mentioned. Although
dozens of semiconductor companies are designing embedded processors with a range of architectural features
to support different kinds of applications, no single architecture is efficient for processing all types of digital
media processing algorithms. This is because processors designed with many pipeline stages (to execute in
parallel multiple operations of numeric-intensive algorithms) do not efficiently handle algorithms that contain
full-control operations. The architectures developed for executing the control code are not efficient at computing
numeric-intensive algorithms. The architectural feature set of the reference embedded processor (see Appendix A
on the companion website) is in between, and is good at handling both control and numeric-intensive algorithms.

In the following subsections, DSP architecture and its performance in executing various algorithms are briefly
discussed. We also briefly describe a few algorithm implementation techniques.

6 Chapter 1

1.4.1 DSP Architecture

A simplified block diagram of embedded DSP architecture is shown in Figure 1.1. The main architectural
blocks of an embedded processor are the processor core (with register sets, ALU, data address generator [DAG],
sequencer, etc.), memory (for holding instructions and data, for stack space, etc.), peripherals (e.g., serial periph-
eral interface [SPI], parallel peripheral interface [PPI], serial ports [SPORT], general-purpose timers, universal
asynchronous receiver transmitter [UART], watchdog timer, and general-purpose I/O) and a few others (e.g.,
JTAG emulator, event controller, direct memory access [DMA] controller). Embedded processor peripherals and
memory architectures are discussed in some detail in Chapter 16.

The peripheral features are important when we talk about the overall application. In this book, we assume
that the architecture comes with all necessary peripherals to enable a particular application. Also, we assume
that the program code and data required for algorithm processing are residing in the faster memory (or level 1,
L1) memory, which can be accessed at the speed of the processor core. If we cannot fit data and program in L1
memory, then we store the extra data or program in L2/L.3 memory and use DMA to get the data or program
from L2/L.3 memory without interrupting the processor core. From an algorithm-implementation point of view,
the important things are processor core architecture, availability of L.1 memory, and internal bus bandwidth.

Even more important than getting data into (or sending it out from) the processor, is the structure of the
memory subsystem that handles the data during processing. It is essential that the processor core access data in
memory at rates fast enough to meet application demands. L1 memory is often split between instruction and data
segments for efficient utilization of memory bus bandwidth. Most DSP architectures support this Harvard-like
architecture (in which data and instruction memories are accessed simultaneously, as shown in Figure 1.1) in
combination with a hierarchical memory structure that views memory as a single, unified gigabyte address space
using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers,
occupy separate sections of this common address space.

The register file contains different register types (e.g., data registers, accumulators, address registers) to hold
the information temporarily for ALU processing or for memory load/store purposes. The processor’s compu-
tational units perform numeric processing for DSP algorithms and general control algorithms. Data moving in
and out of the computational units go through the data register file. The processor’s assembly language provides
access to the data register file. The syntax lets programs move data to and from these registers and specify a
computation’s data format at the same time.

The DAGs generate addresses for data moving to and from memory. By generating addresses, the DAGs let
programs refer to addresses indirectly using a DAG register instead of an absolute address.

The program sequencer controls the instruction execution flow, including instruction alignment and decoding.
The program sequencer determines the next instruction address by examining both the current instruction being
executed and the current state of the processor. Generally, the processor executes instructions from memory in
sequential order by incrementing the look-ahead address. However, when encountering one of the following
structures, the processor will execute an instruction that is not at the next sequential address: jumps, conditional
branches, function calls, interrupts, loops, and so on.

: Data Instruction
i Memory Memory (:j
| 4
B
2
Registers DAG Unit a
=5
ALU Unit Sequencer
DSP Core

Figure 1.1: Simplified diagram of DSP architecture.

Introduction 7

In the next subsection, we consider three algorithms with different processing flow requirements and discuss
to what extent the benchmarks provided by processor manufacturers are useful in deciding which processor
(from dozens of processors available today in the market) is suitable for a particular application.

1.4.2 Algorithm Complexity and DSP Performance

In this section, we consider three simple algorithms—dot product, RC4 stream cipher, and the H.264 CABAC
encode-symbol-normalization process—and discuss embedded processor performance (with a particular archi-
tectural feature set) in executing those three algorithms.

Dot Product
Dot product involves accumulation of sample-by-sample multiplication of elements from two sample arrays.
The dot product, z, of two N-length sample arrays x[] and y[], can be computed as

N—-1

z= Y x[nlyln] (1.1)

n=0

A simple “for” loop C code that implements the dot product described by Equation (1.1) is shown in Pcode 1.1.

What is the cost (in terms of cycles and memory) of this dot-product algorithm for implementation on
the embedded processor, given its processor core architecture? Clearly, we require two buffers of length
2*N bytes (assuming the elements are the 16-bit word type), each to hold the two input array buffers in
memory.

In terms of computations, it involves N multiplications and N additions. If the embedded processor consumes
one cycle for multiplication and one cycle for addition, then we require a total of 2N cycles (assuming a single
ALU) to execute the corresponding dot-product code given in Pcode 1.1. What about the cycle cost of loading
the data from memory to the data registers? Typically, many processors come with separate data load/store units;
hence, we assume that the data loads happen parallel to compute operations and therefore they are free.

z=0;
for(i = 0;i < N;i++)
z += x[il * y[i];

Pcode 1.1: Pseudo code for dot product.

Many embedded processors come with multiply—accumulate (MAC) units, and in this case we require only
N cycles, as the dot product contains a total of N MAC operations. For this case, the two memory loads must
happen in a single cycle.

Now, you may wonder whether this cycle count can be achieved with the C code ported to the processor
assembly using the compiler or with the optimized assembly-level code written manually. Here, when we say
that the cycle count is N for executing the dot product, it means that one MAC operation is mapped to a single
processor instruction, which consumes exactly one cycle; only then can we describe the cycle count as N cycles
for N MAC operations.

Is this the final cycle count for computing the dot product? Not exactly—in the dot-product case, it also
depends on the number of MAC units that the processor comes with. For example, if the processor consists of
four MAC units, then we require only N/4 cycles to complete the dot product. How is this possible? It is possible
because we can execute four MAC operations in parallel on a four-MAC processor, as the dot product has no flow
dependencies. However, we will have a problem with the data load unless we load 128 bits (four 16-bit words
from array x[] and another four 16-bit words from array y[]) of data to eight 16-bit registers in a single cycle.

For efficient compilation to run on a four-MAC processor, we unroll the dot-product loop in Pcode 1.1 by
four times and reduce the loop count by a factor of 4 as shown in Pcode 1.2. Given that the dot product is a
simple algorithm, most compilers can efficiently map the C code to the assembly language so that the difference
between cycle estimation and actual cycles measured is negligible.

