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PREFACE

Continuum mechanics is the study of the evolution of deformation of
continuous matter, called a continuum, in which the behaviors of the matter
at molecular, atomic or subatomic scales are neglected. In this study, we
only consider phenomena in which the evolution of the continuous matter
always remains in thermodynamic equilibrium. This allows us to utilize con-
servation laws, balance principles, thermodynamic principles and relations
in deriving mathematical descriptions of the evolving state of deforming
continua. Continuum mechanics provides the mathematical foundation and
general mathematical framework for developing mathematical descriptions
of the deformation of continuous matter. This mathematical framework then
can be specialized to, for example, the study of solids in the theory of elastic-
ity and the study of fluids in fluid mechanics and gas dynamics. Treatment
of conservation and balance laws and thermodynamic principles for solids
and fluids, and the derivations of constitutive theories for solids and fluids
provide essential core knowledge for further studies in these areas in more
specialized courses. For students-of engineering and mathematical physics,
the study of continuum mechanics provides essential core knowledge in de-
veloping sound mathematical and theoretical foundations for further study
and research in theoretical as well as applied sciences.

There are many books on this subject; some present the subject at the
highest level of abstraction and then there are those in which only the most
elementary aspects of the subject are considered. In most thorough writings
on this subject, complexities of notations and compactness of presentations
leave even the most competent graduate student entangled and confused.
The purpose of this book is to provide comprehensive and complete treat-
ment of the subject of continnum mechanics using simplicity of notations,
detailed and consistent derivations with clarity to the point that even self
study of the subject may be possible. The notations used in this book in
many instances are different than those used currently but are selected to be
natural for the information they represent. For example, we denote Jacobian
of deformation by J, stretch tensor by 8, right and left stretch tensors by
S, and 8; and so on.

Chapter 1 provides a brief introduction of the subject. Einstein’s no-
tation, index notations, matrix and vector notations, basic definitions and
concepts, mathematical preliminaries, tensor calculus and transformations
using co- and contra-variant bases and differential calculus are presented in
Chapter 2. Since matrix and vector notations are by far most easily under-
stood by the students in engineering and physics, emphasis is placed on their
use and deliberate attempts are made whenever possible to present material
in subsequent chapters using this notation.

xx1il
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Chapter 3 contains kinematics of motion and measures of deformation in
Lagrangian as well as Eulerian descriptions. Strain measures for finite defor-
mation are classified as covariant and contravariant measures, and they are
derived using Lagrangian as well as Kulerian descriptions. Covariant mea-
sures of strains, namely, Cauchy strain, Finger strain and Green’s strain, are
derived in the Lagrangian as well as the Eulerian descriptions. Contravari-
ant measures of Cauchy, Finger and Almansi strains are also derived using
the Eulerian and Lagrangian descriptions. This is a significant departure
from conventional writings in which strain measures are only classified as
either Lagrangian or Eulerian. Tensorial nature of strain measures and in-
fluence of rotation of frames on various measures are established. Physical
meaning of the components of strains is illustrated. Polar decomposition of
deformation including theorems and their proofs is also presented. Strain
measures are also derived using the left and right stretch tensors. Invariants
of strain tensors and relationships between deformed and undeformed areas
and volumes are also derived. '

Chapter 4 contains definitions and measures of stress. Using infinitesi-
mal deformation, the stress concept is introduced, the Cauchy principle is
derived, and the tensorial nature of the stress matrix is established. The con-
cept of contravariant stress components is introduced for finite deformation
from which contravariant Cauchy stress tensor is derived in the Lagrangian
and Eulerian descriptions. Covariant Cauchy stress tensors in Lagrangian
and Fulerian descriptions are derived in a similar fashion using covariant
stress components and contravariant basis. Jaumann stress tensor and its
relationship to contravariant and covariant Cauchy stress tensors is pre-
sented. First and second Piola-Kirchhoff stress tensors in Lagrangian and
Eulerian descriptions are derived using contravariant and covariant Cauchy
stress tensors and their importance in deriving convected time derivatives
of the covariant and contravariant stress tensors and in balance laws and
constitutive theories is discussed. Chapter 5 contains derivations of the rate
of deformation, area, volume, strain rate tensors, spin tensor and convected
time derivatives of stress tensors (for compressible and incompressible mat-
ter) and strain tensors.

Chapter 6 contains derivations of mathematical models in the Eulerian
description based on conservation and balance laws. Continuity, momentum
and energy equations and entropy inequality are derived using conservation
of mass, balance of linear momenta and first and second laws of thermo-
dynamics in the FEulerian description. Such descriptions are useful in fluid
mechanics.

Chapter 7 presents derivations of mathematical descriptions for com-
pressible and incompressible matter in the Lagrangian description using
conservation and balance laws. Such mathematical models are ideally suited
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for solid matter in which rate of work results in rate of entropy generation.
Separate derivations of the first and second laws of thermodynamics for ther-
moelastic solids in which rate of work does not result in rate of increase of
entropy are also presented. In the derivations of mathematical descriptions
presented in this chapter, material point displacements are intrinsic and
are monitored. In Chapter 8, axioms and principles of constitutive theory
are considered. Various approaches of deriving constitutive theories using
entropy inequality and theory of generators and invariants are discussed.
Approaches of determining dependent variables in constitutive theories and
their arguments are presented for solid matter as well as for fluids. Deter-
mination of material coefficients is also considered.

Constitutive theories for stress tensor and heat vector for compressible
and incompressible thermoelastic solids using strain energy density function
and complementary strain energy density function are presented in Chap-
ter 9. Chapters 10 and 11 consider ordered rate constitutive theories for
thermoviscoelastic solids without and with memory. It is shown that all
such constitutive theories are ordered rate constitutive theories. Simplifi-
cations of these theories for infinitesimal deformation are also considered.
Material coefficients are derived for the general case of finite deformation as
well as infinitesimal deformation. One-dimensional simple degenerated cases
of these theories are considered and compared with those derived based on
phenomenological approach.

Chapters 12 and 13 contain derivations of the constitutive theories for
homogeneous and isotropic compressible as well as incompressible thermo-
viscous fluids and thermoviscoelastic fluids (polymers). The constitutive
theories are derived using covariant, contravariant and Jaumann measures
of stresses, their convected time derivatives and convected time derivatives
of Green’s strain tensor and Almansi strain tensor. These constitutive theo-
ries are also ordered rate theories. Using simplified forms of the general rate
theories, rate theories for Newtonian fluids, generalized Newtonian fluids,
Maxwell fluids, Oldroyd-B fluids and Giesekus fluids are derived. Deriva-
tions of material coefficients are presented for all cases. Chapter 14 contains
derivations of the constitutive theories for homogeneous and isotropic com-
pressible as well as incompressible hypo-elastic solids.

Chapter 15 considers various thermodynamic relations and brings to-
gether the mathematical models derived in Chapters 6 and 7 and the consti-
tutive theories in Chapters 9-14 to present complete mathematical models
that have closure and can be readily used in applications. Principle of virtual
work, Hamilton’s principle, the derivations of Euler-Lagrange equations, mo-
mentum equations and the equations of equilibrium based on the principle
of virtual work are considered in Chapter 16. Appendix A provides a list
of generators and invariants for various combinations of argument tensors.
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Appendix B is helpful in transforming information and mathematical models
from Cartesian to cylindrical or spherical coordinate systems.

The material presented in this book is intended for two three-credit hour
courses in continuum mechanics. The material in Chapters 1 to 7 is rec-
ommended for the first course and the remaining chapters for the follow-up
course. The author has successfully used this material in this format for the
last six years in the Mechanical Engineering Department at the University
of Kansas.

The author’s long friendship and collaboration with Professor J. N. Reddy
(Texas A&M University) has been extremely enjoyable and fruitful in bring-
ing focus, depth and clarity to the material presented in this book. Many
long discussions on the phone and in person on various topics with Pro-
fessor Reddy, especially in the areas of constitutive theories and the joint
research grants from U.S. Army (ARO) resulted in a significant number of
joint fundamental publications, which have helped the author in developing
and presenting this material in the book with more depth and clarity and yet
maintaining simplicity. The author is truly grateful to many of his graduate
students: Daniel Nunez, Tristan Moody, Yusshy Mendoza, Aaron Joy and
Michael Powell, whose Ph.D. and M.S. theses in various areas of continuum
mechanics have helped me immensely in bringing the subject matter in this
book to the present level of maturity. My very special thanks to Dr. Daniel
Nunez, who was the author’s first Ph.D. student to engage in theoretical and
continuum mechanics research. His interest in the subject, hard work, many
discussions, suggestions, and above all, typing and retyping many times of
the entire manuscript single handedly, has helped me immensely in bringing
this book to completion. This book would not have been possible with-
out the research grants: W911NF-09-1-0548 (FED0065623), W-911NF-11-
1-0471 (FED0061541) and W911NF1210463 from the U.S. Army Research
Office (ARO) to the author at the University of Kansas and to Professor J.
N. Reddy at Texas A&M University that lead to research in various areas of
continuum mechanics, especially constitutive theories. My sincere thanks to
Dr. Joseph Myers, Division Chief, Mathematical Sciences Division, Informa-
tion Science Directorate, ARO, for his interest and support of the research
results contained in this book.

This book contains many involved equations, derivations and mathemat-
ical details and it is hardly possible to avoid some typographical and other
errors. The Author would be grateful to those readers who are willing to
draw attention to the errors using the email: kssurana@ku.edu

Karan S. Surana, Lawrence, KS
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