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APPROXIMATION OF VECTOR VALUED FUNCTIONS



PREFACE

This work deals with the many variations of the Stone-
Weierstrass Theorem for vector - valued functions and some of its
applications. Tor a more detailed description of its contents
see the Introduction and the Tabhle of Contents. The boock is larje-
ly self - contained. The amount of Functional Analysis required
is minimal, exce»t for Chapter 8. But the results of this Chapter
are not used clsewhere. The book can be used by graduate students
who have taken the usual first - year real and complex analysis
courses.

The treatment of the subject has not apneared in book
form previously. cven the proof of the Stone - Weierstrass Theo-
rem is new, and due to S. 'lachado. ile also give results in non-
archimedean approximation theory that are new and extend the
Dieudonné - Kanlansky Theorem to nonarchimedean vector - valued
function spaces.

I thank Professor Silvio Machado, from the Universida-
de Federal do Rio de Janeiro, for his valuable comments and re-
marks on the subject. Without his heln this would be a different
and noorer book. I thank also Professor Leownoldo Nachbin, from

the Universidade Federal do Rio de Janeiro and the University

L &



of Rochester, whose advice and encouragement was never failing.
Finally, I wish to thank Angelica Marquez and Elda

Mortari for typing this monograph.

JOAO B. PROLLA

Campinas, April 1977



INTRODUCTION

The typical problem considered in this book is the
following. One is given a vector subspace W of a locally convex
space L of continuous vector-valued functions, which is a modu-
le over an algebra A of continuous scalar-valued functions,and

the problem is to describe the closure of W in the space L.

In chapter 1 we start with the case in which L=C(X;E)
with the compact-open topology. VThen the algebra A is self-ad-
joint, the solution of the above problem is given by the Stone-
~Weierstrass theorem for modules. A very elegant and direct
proof due to S. Machado (see [ 38]) is presente® here. As a co-
rollary one gets the classical Stone-Weierstrass theorem for
self-adjoint subalgebras of C(X;C€)- When the algebra A is not
self-adjoint, a solution of the problem is given by Bishop's
theorem. The proof that we include here is again due to S. Ma-
chado (see [ 37]). The main idea is to use a "strong" Stone-
~Weierstrass theorem for the real case plus a transfinite ar-
gument. This is done in Machado's paper via Zorn's Lemma. Here
we use the transfinite induction process found in the original
paper of Bishop (see [8]). We prefer this new method over de
Brange's technique, because it can be applied to other situa-
tions in weighted approximation theory, namely where measure
theoretic tools are either painful to apply or not available
at all. In § 9 of this Chapter we treat a special case of vec-
tor fibrations, and prove in this context a "strong" Stone-
-Weierstrass theorem due to Cunnincham and Roy (see | 15]). This

result is used in the next section to characterize extreme func-

ix



X INTRODUCTION

tionals. As corollaries, we get the Arens-Kelley theorem for
scalar-valued functions, and Singer's theorem (vector-valued
case) . The results of Buck [ 12] and Strodbele [63] are also ob-

tained. In an appendix we treat the non locally convex case.

Chapter 2 deals with vector-valued versions of Dieu-
donné's theorem on the approximation of functions of two vari-
ables by means of finite sums of products of functions of one

variable (see [18]).

Chapter 3 is devoted to Tietze type extension theo-
rems for vector-valued functions defined on compact subsets of
a completely regular Hausdorff space. A typical result says
that, if Y C X is a compact subset of a completely regular

space X, and E is a Fréchet space, then Cb(X;E)|Y = C(Y;E).

The subject matter of chapter 4 is the notion of po-
lynomial algebras. This notion was introduced in PeXczynski
[47], and the name is due to Wulbert (cf. Prenter [49]).In his
definition Pe?czynsky used multilinear mappings, whereas
Wulbert used polynomials. A third equivalent definition is
given in Blatter [4]. We present here Stone-Weierstrass theorem
for polynomial algebras. As a corollary we get the infinite di-
mensional version of the Weierstrass polynomial approximation
theorem. Petczynski attributes this result to S. Mazur (un-
published) in the case of Banach spaces. A much strengthened
form of Mazur's result was proved in the joint paper Nachbin,
Machado, Prolla [46], namely that the polynomials of finite ty-
pe from a real locally convex space into another are dense in
the space of all continuous function with the compact-open to-

pology. Prenter [ 48] established Mazur's result for separable
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Hilbert spaces. In this chapter we also prove Bishop's theorem
for polynomial algebras using the definition given by

Petczynski. It remains an open problem for the more general po-
lynomial algebras. Chapter 4 ends with a study of the approxi-

mation of compact linear operators by polynomials of finite ty-
pe.

In Chapter 5 we are concerned with weighted approxi-
mation of vector-valued functions, i.e., with the Bernstein-
Nachbin approximation problem. We extend the fundamental work
of Nachbin (see for example [ 43]) from the real or self-adjoint
complex case to the general complex case, in the same way that
Bishop's theorem generalizes the Stone-Weierstrass theorem. In
the joint paper with S. Machado [40], we accomplished this for
vector fibrations. Here, however, we restrict ourselves to the
particular case of vector-valued functions. As a corollary to
our solution of the Bernstein-Nachbin approximation problem we
get a strengthened version of Kleinstick's solution of the
bounded case (see [ 35]) of Bernstein-Nachbin problem, as well
as of Bishop's theorem for weighted spaces proved by Prolla
[ 51]. The result of Summers [ 64] for scalar-valued functions

is likewise generalized.

In the final two paragraphs of Chapter 5 we study
the problem of completeness of Nachbin spaces and the charac-

terization of the dual space of a Nachbin space.

In an appendix to Chapter 5, we present a very sim-
ple proof, due to G. Zapata (see [ 68]), of Mergelyan's theorem
characterizing fundamental weights on the real line. This re-

sult was then used by Zapata to show that Hadamard's problem
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on the characterization of quasi-analytic classes of functions
is equivalent to Bernstein's problem on the characterization

of fundamental weights.

The result of Chapter 5 are applied in Chapter 6 to
CO(X;E), the space of all continuous functions that are E-val-
ued and vanish at infinity on a locally compact space X, equip-
ped with the uniform convergence topology. We also present here
Brosowski, Deutsch and Morris theorem (see [10]) on extreme
functionals of the unit ball of the dual of CO(X;E), generaliz-

ing it to vector fibrations.

Analogously, in Chapter 7 we apply the results of
Chapter 5 to the space Cb(X;E) of all bounded continuous func-
tions, equipped with the strict topology of Buck. We get both
Stone-Weierstrass and Bishop's theorem for this topology. We
also characterize extreme functionals of polar set of neighbor-

hoods of the origin of Cb(X;E).

The eighth Chapter deals with the e-product of L.

Schwartz and the approximation property for certain spaces of
functions, e.g. Aron and Schottenloher [3J result on the equi-
valence between the approximation property for a complex Banach
space E and the same property for the space of holomorphic map-
pings on E with the compact-open topology. Also, the proof due
to K.-D. Bierstedt [SJ of the vector-valued version of Mer-
gelyan's theorem on approximation in the complex plane is to
be found in this Chapter. It ends with some results of Bierstedt
[6] on the "localization" of the approximation property via ma-

ximal anti-symmetric sets.
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Chapter 9 deals with nonarchimedean approximation The-
ory. The first results in this area were proved by J. Dieudonné.
He proved in [70] , for functions with values in the field of
p - adic numbers, the analogues of Weierstrass polynomial approx-
imation theorem, and of Stone - Weierstrass Theorem on density of
separating subalgebras. To prove these Theorems he first estab-
lished the analogues of Tietze's Extension Theorem and his own
Theorem on appoximation of functions on cartesian products. 1In
1949, Kaplansky generalized Dieudonné's Stone - Weierstrass Theo-
rem to the case of functions with values in any field with a
(rank one) valuation. (See Kaplansky |72 ). The case of arbi —
trary Krull valuations (or of archimedean valuations other than
the usual absolute value of € ) was established by Chernoff,
Rasala and Waterhouse in [69].

We here treat only the case of rank one, i.e. real val-
ued nonarchimedean valuations. We extend the Dieudonné -Kaplansky
Theorem to vector valued functions, more precisely to functions
with values in a nonarchimedean normed space over some valued
field (F,| * |). Our treatment cover the case of A-modules,where
A is an algebra of F - valued functions, and in the case E =F
extends Kaplansky's result in the sense that we compute the dis-
tance of a function from a module. As a corollary one gets the
description of the closure of a module and the density result.
We also present Murphy's treatment of vector fibrations in a
slightly modified version (see [74 ]). Results on ideals are also
given, extending a result of I. Kaplansky on ideals of function
algebras (see I. Kaplansky, Topological Algebra, Notas de Mate-

matica N9 16 (Ed. L. Nachbin), Rio de Janeiro.)
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CHAPTER 1

THE COMPACT-OPEN TOPOLOGY

§ 1 BASIC DEFINITIONS

Throughout this monograph X denotes a non-void
Hausdorff space, and E denotes a non-zero locally convex space
over the field X (IK= IR or C). The topoloaical dual of E is
denoted by E', and the set of all continuous seminorms on E is
denoted by cs(E).

The vector space over IK of all continuous func-
tions taking X into E is denoted by C(X;E). For every non-void

compact subset K C X and every continuous seminorm p E cs(E),
£ > fllg, o = suwp {pP(£(x)); x € K}

defines a seminorm on C(X;E). The topology defined by all such
seminorms is called the compact-open topology.
When E is a normed space, and t + ||t]|]| 1is its

norm, we write
[1£llg = sup {[[£(x)[]; x € K}

for the corresponding seminorm on C(X;E). In particular, when

E = IXK, we write
Hfl]K =sup {|£f(x)]|; x € K}

and, if no confusion may arise, C(X) = C(X; XK).

The vector subspace of all f € C(X;E) such that f(X)
is a bounded subset of E, is denoted by Cb(X;E) and topologized
by considering the family of all seminorms

f - ![fllp = sup {p(f(x)); x € X},

where p € cs(E). This topology is referred to as the topology
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of uniform convergence on X, or as the uniform topology.

When X is compact, the two spaces C(X;E)and Cb(X;E)
coincide, and the compact-open and the uniform topoloay are the
same.

When E is a normed space, and t - [lt|| is its nom,

we write
[Tell = sup {|1f(x)]!; x € x}

for the corresponding norm on Cb(X;E). If F = K, and no confu-
sion mav arise, we write Cb(x) = Cb(X;IK).

Given a non-empty subset S C C(X;E), we define an
equivalence relation on X, by settina, for all x, v € X, x = v
(mod. S) if, and only if, f(x) = f(v) for all f E S. Since the
elements of S are continuous functions, the ecuivalence classes
(mod. S) of X are closed subsets. The set S C C(X;E) is said to
be separating on X if the eaquivalence classes (mod. S) of X are
sets reduced to points. This is eauivalent to sav that, for anv
pair x, v € X of distinct points, there is f E S such that
f(x) # f(yv). If S is separatina on X, we also sav that S sepa-
rates the points of X.

If K C X is a closed non-emptyv subset, and SCC(X;E),
then S[K denotes the subset of C(K;E) consistina of all geC(K;E)
such that there exists f € S with the property that a(x)= f(x),
for all x € K. In particular, if K C X is compact and E =1,
then C(K) = Cb(X)!K, bv the Tietze Extension'Theorem, when X is
completely reaqular.

It follows easilv from the above definitions that
for any closed subset K C X, if x,v €E K then x = v (mod. S) if
and onlv if x = v (mod. S|K). Moreover, agiven anv eguivalence
class Y C K (mod. S|K) there is a unique ecuivalence class ZC X
(mod. S) such that Y = Z N K.

Suppose that E is a Hausdorff space,and SCC(X;E) .
Let A = {¢ o £f; ¢ E E', £ E S}. Then for everv x,y E X, X = vy
(mod. S) if, and only if, x = v (mod. A). In fact, the "only if"

part is true even when E is not Hausdorff.
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§ 2 LOCALIZABILITY

Let A be a subalagebra of C(X;IK). A vector subspace
W C C(X;E) will be called a module over A, or an A-module, if
the function x -+ a(x)f(x) belongs to W, for every a € A and
f e w.

Notice that, if B denotes the subaloebra of C(X;IK)
generated by A and the constant functions, then ¥ is an A-mo-
dule if, and only if, W is a B-module. Moreover, the equiva-

lence relation x = v (mod. A) is the same as x = v (mod. B).

DEFINITION 1.1 Let W C(X;E) be an A-module. We say that W
is localizable under A in C(X;E) Zf the compact-opren closure of
W in C(X;E) Zs the set of all f € C(X;E) such that f|Y belongs
to the compact-open closure of WY in C(Y;E) for each equiva-
lence class Y C X (mod. A).

This is ecuivalent to sav that the compact-open clo-
sure of W in C(X;E) is the set of all f € C(X;E) such that,civen
Y C X an equivalence class (mod. A), K C YV a compact subset,
€ > 0; and p € cs(E), there is a € W such that p(f(x)-a(x))< €,
for all x € K. We let LA(W) be the set of all such functions.
Notice that LA(W) is alwavs a closed subset of C(X;E),containine
W. It follows that W is localizable under A in C(X;E) if, and
only if, LA(W) is contained in the compact-open closure W of W
in C(X:;E).

Notice too that LA(W) = LB(W), if B denotes the sub-
alocebra of C(X;IX ) cenerated bv A and the constant functions.
Thus W is localizable under A in C(X;E) if, and onlv if, W is
localizable under B in C(X;E).

When E = IK, everyv subalagebra A C C(X;IX) is a mod-
ule over itself. The definition of localizabilitv is motivated
by the classical Stone-Weierstrass Theorem. Indeed, we have the
followina result which connects the notion of localizability
with the usual statement of the Stone-Weierstrass Theorem. (See
Theorem 1, § 17, Nachbin [437).

PROPOSITION 1.2 Let A C C(X;IK) be a IX-subalgebra, and let
f E C(X;IK). Then f € LA(A) if, and only <If, the following two
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conditions are satisfied:

(1) for every x E X such that £(x) # 0, there exists
g € A such that g(x) # 0;

(2) for every x,y € X such that f(x) # f(y), there
exists g E A such that g(x) # ol(y).

PROOF (a) Suppose f E LA(A). Let x € X be such that f(x)# 0.
Assume that g(x) = 0 for all g € A. Let Y C X be the equivalence
class (mod. A) that contains x, and let K = {x}. Bv hypothesis,
there is g € A such that [f(x) - g(x)] < e = |[f(x)]. Since
g(x) = 0, this is a contradiction. Therefore (1) is satisfied.
The proof that (2) is satisfied is analoaous, so we omit the
details.

Suppose now conditions (1) and (2) are satisfied.
Let Y C X be an equivalence class (mod. A). By (2), f is con-
stant on Y. Let u € KX be its constant value. If u = 0, then

a =0 € A coincides with f on Y. Assume now that u # 0. By (1),
there is a € A such that g(x) # 0, where x € Y is an arbitrary
point fixed in Y. Then al(y) = a(x) for all v E Y. Therefore
h = (u/a(x))g belongs to A and h(y) = u = f(y) for all vy E Y.
Hence f € LA(A).

§ 3 PRELIMINARY LEMMAS

In this section we shall obtain two lemmas that will
be useful in the "approximate partition of unity" needed in the
proof of the main theorem of this chapter. The second of those
lemmas is due to Jewett [32], who employed it in his proof of
a variation of the Stone-Weierstrass theorem. It is a corollary
of the classical Weierstrass -polynomial approximation theorem,
but we prefer to present Jewett's direct proof, to make our
version of the Stone-VWeierstrass theorem independent of Weiers-
trass theorem.

LEMMA 1.3 Let A C Cb(X;DR) be a subalgebra containing the con-
stants, and let Y C X be an equivalence class (mod. A).For every
e > 0, and every open subset U C X, containing Y, such that the
complement of U is compact, we can find o € A such that 0 < g <

<1, aly) =1 for all y € Y, and a(t) < ¢ for t g U.



