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Preface

This book develops a True Digital Control (TDC) design philosophy that encompasses data-
based (statistical) model identification, through to control algorithm design, robustness evalua-
tion and implementation. Treatment of both stochastic system identification and control design
under one cover highlights the important connections between these disciplines: for example,
in quantifying the model uncertainty for use in closed-loop stochastic sensitivity analysis.
More generally, the foundations of linear state space control theory that are laid down in early
chapters, with Non-Minimal State Space (NMSS) design as the central worked example, are
utilised subsequently to provide an introduction to other selected topics in modern control
theory. MATLAB®! functions for TDC design and MATLAB® scripts for selected examples
are being made available online, which is important in making the book accessible to readers
from a range of academic backgrounds. Also, the CAPTAIN Toolbox for MATLAB®, which
is used for the analysis of all the modelling examples in this book, is available for free down-
load. Together, these contain computational routines for many aspects of model identification
and estimation; for NMSS design based on these estimated models; and for offline signal
processing. For more information visit: http://www.wiley.com/go/taylor.

The book and associated software are intended for students, researchers and engineers who
would like to advance their knowledge of control theory and practice into the state space
domain; and control experts who are interested to learn more about the NMSS approach
promoted by the authors. Indeed, such non-minimal state feedback is utilised throughout this
book as a unifying framework for generalised digital control system design. This includes
the Proportional-Integral-Plus (PIP) control systems that are the most natural outcome of the
NMSS design strategy. As such, the book can also be considered as a primer for potentially
difficult topics in control, such as optimal, stochastic and multivariable control.

As indicated by the many articles on TDC that are cited in this book, numerous colleagues
and collaborators have contributed to the development of the methods outlined. We would like
to pay particular thanks to our good friend Dr Wlodek Tych of the Lancaster Environment
Centre, Lancaster University, UK, who has contributed to much of the underlying research
and in the development of the associated computer algorithms. The first author would also
like to thank Philip Leigh, Matthew Stables, Essam Shaban, Vasileios Exadaktylos, Eleni
Sidiropoulou, Kester Gunn, Philip Cross and David Robertson for their work on some of the
practical examples highlighted in this book, among other contributions and useful discussions
while they studied at Lancaster. Philip Leigh designed and constructed the Lancaster forced

' MATLAB®, The MathWorks Inc., Natick, MA, USA.
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ventilation test chamber alluded to in the text. Vasileios Exadaktylos made insightful sugges-
tions and corrections in relation to early draft chapters of the book. The second author is grateful
to a number of colleagues over many years including: Charles Yancey and Larry Levsen, who
worked with him on early research into NMSS control between 1968 and 1970; Jan Willems
who helped with initial theoretical studies on NMSS control in the early 1970s; and Tony
Jakeman who helped to develop the Refined Instrumental Variable (RIV) methods of model
identification and estimation in the late 1970s. We are also grateful to the various research
students at Lancaster who worked on PIP methods during the 1980s and 1990s, including
M.A. Behzadi, Changli Wang, Matthew Lees, Laura Price, Roger Dixon, Paul McKenna and
Andrew McCabe; to Zaid Chalabi, Bernard Bailey and Bill Day, who helped to investigate
the initial PIP controllers for the control of climate in agricultural glasshouses at the Silsoe
Research Institute; and to Daniel Berckmans and his colleagues at the University of Leuven,
who collaborated so much in later research on the PIP regulation of fans for the control of
temperature and humidity in their large experimental chambers at Leuven.

Finally, we would like to express our sincere gratitude to the UK Engineering and Phys-
ical Sciences, Biotechnology and Biological Sciences, and Natural Environmental Research
Councils for their considerable financial support for our research and development studies at
Lancaster University.

C. James Taylor, Peter C. Young and Arun Chotai
Lancaster, UK
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