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PREFACE

The response to the Call-for-Papers from authors
throughout the world has indicated the widespread interest in
the subject of 'Creep and Fracture of Engineering Materials
and Structures'. The papers accepted for publication in the
Proceedings have been separated into six sections covering
the major areas of interest, namely, creep mechanisms,
deformation processes in particle-strengthened alloys, creep
fracture processes, creep and fracture of ceramics,
materials behaviour at elevated temperatures and the design
and performance of components and structures.

The Proceedings are printed from direct lithographs of
authors manuscripts and the editors cannot accept
responsibility for any inaccuracies, comments or opinions
expressed in the papers. However, the organisers wish to
thank the authors for presenting their work and ideas in the
context of the overall position currently reached in the area
relevant to the theme considered. 1In this way, the
Conference provides both an overview of the different
approaches being developed in various centres active in the
field of creep and fracture and an indication of the
principal avenues along which future activities should be
directed.

The organisers wish to acknowledge the generous
sponsorship of the Conference provided by the United States
Air Force, European Office of Aerospace Research and
Development and the Department of the Navy, Office of Naval
Research. The sponsorship received from Mand Testing
Machines Ltd., Eurotherm Ltd. and Automatic System
Laboratories Ltd. towards the social programme of the
Conference is also gratefully acknowledged.

B. WILSHIRE D.R.J. OWEN

Swansea, March 1981.
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DISLOCATION CREEP IN SUBGRAIN-FORMING PURE METALS AND ALLOYS
A. S. Argon, F. Prinz, and W. C. Moffatt

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

SUMMARY

Steady state creep and structural transients are con-
sidered in subgrain-forming pure metals and alloys. The for-
mation of subgrain boundaries by an evolutionary clustering
process is described, together with the process of subgrain
boundary annihilation by coalescence, due to their migration,
leading to a structural steady state. The role of the various
components of the dislocation content of sub-boundaries is
discussed with particular emphasis on the debris content that
plays a key role in the mobility of sub-boundaries under
stress. Finally, internal stresses, measurable by the stress
dip test in such metals, are attributed to the flexing under
stress of sub-boundaries. The calculated magnitudes of such
internal stresses are in very good agreement with reported
measurements. These internal stresses are responsible for
changing the normal third power law of the strain rate stress
relation into one of higher power.

1. INTRODUCTION

Creep deformation at high temperatures in engineering
structures is of unquestioned technological importance. In
its relatively idealized form in pure metals and single phase
alloys, creep has been widely investigated. The phenomeno-
logy of creep and the many attempts to explain it mechanis-
tically have been reviewed recently [1-4]. 1In spite of the
fact that considerable detailed criticism has been directed
against it, the simple picture of Bailey [5] and Orowan [6]
that high temperature creep combines two competing mechanisms
of strain hardening and thermal recovery has found wide ac-—
ceptance and forms the basis of nearly all current research
on the subject. A point of particular interest has been
steady state creep in pure metals and Class II alloys, its



2

specific functional form, and its basis in fundamental pro-
cesses of the glide, climb, and clustering of dislocations
into subgrain walls. This will also be the subject of pri-
mary interest to us in this communication, where we will at-
tribute the high stress exponent of the steady state creep
rate to long range dynamic internal stresses, and will pro-
pose the bowing of subgrain walls under stress as the prin-
cipal source of this internal stress. Furthermore, we will
consider the mobility of subgrain walls under stress as an
important part of steady state and present an outline develop-
ment for the production and annihilation of subgrain walls.
We will then proceed and furnish some new experimental obser-—
vations on the specific dislocation content of sub-boundaries
in creeping alloys and discuss the role of this dislocation
structure in governing the mobility of sub-boundaries. 1In
all of this we will strive for internal consistency but leave
the more complete mechanistic description of the complex
evolutionary processes of steady state to a future communi-
cation.

2. STEADY STATE CREEP

2.1 1Internal Stresses

The analyses by Bird, Mukherjee, and Dorn [1], Mohamed
and Langdon [7], and others [2-4] of many creep studies have
established that the steady state creep rate is given by an
expression of the form

[

U
where b, p, ©, X, and D are the interatomic distance,
the shear modulus, the atomic volume, the stacking fault
energy and the self diffusion constant, and where m , the
stress exponent, is often in the range of 5 . Argon and
Takeuchi [8] have shown that a creep rate expression of the
above form but with an exponent of m = 3 is a natural re-
sult of a steady state sequence of processes of gliding and
climbing of dislocations. Under a tensile stress G , the
process starts by the generation of dislocations at sources
after the passage of a characteristic waiting time requiring
the climb of a short segment a critical distance A = (0.1) ub/o,
to become free from surrounding dislocations. The generated
dislocations move by a predominantly glide motion over a stor-
age distance L that is often larger than subgrain dimen-
sions, where they become trapped by other dislocations within
a trapping distance w . There they are eventually anni-
hilated after some further climb toward the trapping dis-
locations of opposite sign, resulting in a mobile dislocation
density of
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where Cm is a constant of order 500 and X the stacking
fault energy. The model considers that most of the time,

Ta » 1s spent by a dislocation in the various climb steps

leading to eventual annihilation in which the velocity v,
of the dislocation is given by [9]

2
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where C is a numerical constant of order 10° , O 1is the
climb prgducing normal stress acting across the half plane

of the dislocation, and c¢., 1is the jog concentration along
the extended dislocation. JThis leads to an average velocity
v during the life time of a dislocation:

v = L/Ta I T W(l—\))wz/va0 s w = ub/4mo . (4a,b,c)

Apart from the specific dependence of the strain rate on the
stacking fault energy given by Eqn.(l), which results in part
from the form of the climb velocity of Eqn.(2) and in part
from a factor (X/ub) given in Eqn.(2) that gives a decreased
source configuration probability discussed by Argon and
Takeuchi [8], the form of Eqn.(l) with m = 3 is identical
to the one introduced by Weertman [10] as the rational creep
law.

Argon and Takeuchi [8] have proposed further that powers
higher than 3 in the stress exponent of Eqn.(l) in subgrain
forming alloys are due to dynamic internal stresses that re-
sult from the bowing of the boundaries of such subgrains as
they migrate under stress. According to this model, most
sub-boundaries bow out under an applied stress to an ampli-
tude y over the sub-boundary facet length of &, as the
sub-boundary nodes, subject to geometrical constraints, drag
behind as shown in Fig. 1. Such flexing of sub-boundary

Fig. 1 Idealized
hexagonal subgrains
with randomly flexed
sub-boundaries under
stress.
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facets, treated as a collection of discrete dislocations, has
been studied by Vreeland [11], who finds, as shown in Fig. 2,
that the amplitude of flexing of a sub-boundary with lattice
misorientation 6 under an applied stress ¢ is given by

Y - o.g 40dv) jod b)) (5)
§ ) il ub /| 88 :

It is well known that when the plane of a low angle boundary
is rotated from its lowest energy orientation, large and long
range internal stresses are produced [12]. On this basis,
Argon and Takeuchi [8] have associated the long range stresses
measured in the stress dip experiments [13] to such rotations
of sub-boundary planes and proceeded to calculate the ampli-
tude o of these randomly positive and negative stresses by
treating the volume enclosed by the flexed lobes of sub-
boundaries as if they were partially constrained shear trans-—
formations with transformation shear strains of 6 . This
has given

o, = (1/8) () (¥/§) (6)

which upon substitution of Eqn.(5) and the use of the steady
state relationship between subgrain size d and stress

d = 26 = K(ub/0) (7)

1/3

2
o/u = (€ - /m ) o/ 17 (c; = 0.317), ©

Takeuchi and Argon [3] have shown from the analysis of creep
experiments of others that K varies from near 10 for close
packed metals to near 60-70 for alkali halides and oxides,
with an overall average being near 30. This dependence of the
internal stress Oi on the applies stress O is plotted
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Fig. 3 Comparison of computed dependence of internal
stress on applied stress, with the measured
dependence for a variety of pure metals and
Class II alloys (from Argon and Takeuchi [8]).

in Fig. 3 together with the internal stresses measured with
the stress dip test in many pure metals and Class II alloys
for a typical lattice rotation of 6 = 1°. The agreement
between theory and the entire family of experimental results
is good.

If the stress in the general expression for steady state
creep given by Eqn.(l) with an exponent m = 3 1is now inter-—

preted to be the effective stress

o = g-0 5 (9)

the overall creep rate should then be given by an expression

of 3
( 3¢ C, L0 Vs
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where A 1dis a numerical constant of the order of (6x106)c.
[8]. The stress dependence of this equation for K = 30

and © = 1° is plotted in Fig. 4 over a decade of o/p in
which most power-law creep experiments are conducted. Clearly,



as Eqn.(10) and the plot of Fig. 4 shows, € exhibits a
threshold behavior at a stress that makes the content of the
last parenthesis vanish. We dismiss this behavior as unreal
and expect that both grain-boundary sliding and Nabarro-
Herring creep will add a substantial component of strain rate
to the total in this low stress range. That this must be the
correct explanation is shown from much of the actual internal
stress measurements shown in Fig. 3 which indicate that at
these low stress levels the internal stress makes up almost
the entire applied stress leaving only the mechanisms that do
not involve dislocation mobility to produce inelastic strain.
The plot of Fig. 4 shows that in much of the useful range of
stress (107*-1073)u
the apparent stress
T . exponent is in the
neighborhood of 5 ,
going from 6 to
4.5. This is the
normal reported be-
-6 havior. Much above
a stress of 2x10’3u,
. the curve goes to an
asymptotic form of a
power of 3 as
0;/0+0 . 1In this
—o7 range, however, addi-
tional low tempera-
# ture processes involv-
ing thermally acti-
vated overcoming of
slip obstacles can
—i0 produce increasingly
large components of
strain rate which
have been excluded
from the model that
-9 gives rise to Eqn.
—° (9). It is this
additional component
that results in the
so—called power-law
break-down behavior.
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10 103 1073
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Fig. 4 Computed dependence of steady
state creep strain rate on the applied
stress. Numbers indicate the level of
the local power law creep exponent
(from Argon and Takeuchi [8]).



