

HANDBOOK ENOLOGY

Volume 1

The Microbiology of Wine and Vinifications

SECOND EDITION

P. Ribéreau-Gayon D. Dubourdieu B. Donèche A. Lonvaud

$\begin{array}{c} \textbf{Handbook of Enology} \\ \textbf{Volume 1} \\ \textbf{The Microbiology of Wine and Vinifications} \\ \textbf{2}^{nd} \ \textbf{Edition} \end{array}$

Pascal Ribéreau-Gayon Denis Dubourdieu Bernard Donèche Aline Lonvaud

Faculty of Enology Victor Segalen University of Bordeaux II, Talence, France

Original translation by

Jeffrey M. Branco, Jr.
Winemaker
M.S., Faculty of Enology, University of Bordeaux II

Revision translated by

Christine Rychlewski Aquitaine Traduction, Bordeaux, France

Copyright © 2006

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wilev.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London WIT 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd. 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd. 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Ribéreau-Gayon, Pascal.

[Traité d'oenologie, English]

Handbook of enology / Pascal Ribéreau-Gayon, Denis Dubourdieu, Bernard

Donèche; original translation by Jeffrey M. Branco, Jr. - 2nd ed. /

translation of updates for 2nd ed. [by] Christine Rychlewski.

v. cm.

Rev. ed. of: Handbook of enology / Pascal Ribéreau Gayon . . . [et al.]. c2000.

Includes bibliographical references and index.

Contents: v. 1. The microbiology of wine and vinifications

ISBN-13: 978-0-470-01034-1 (v. 1 : acid-free paper)

ISBN-10: 0-470-01034-7 (v. 1 : acid-free paper)

1. Wine and wine making—Handbooks, manuals, etc. 2. Wine and wine making-Microbiology-Handbooks, manuals, etc. 3. Wine and wine

making—Chemistry—Handbooks, manuals, etc. I. Dubourdieu, Denis. II. Donèche, Bernard. III. Traité d'oenologie. English. IV. Title.

TP548.T7613 2005

663'.2-dc22

2005013973

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01034-1 (HB) ISBN-10: 0-470-01034-7 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

$\begin{array}{c} \textbf{Handbook of Enology} \\ \textbf{Volume 1} \\ \textbf{The Microbiology of Wine and Vinifications} \\ \textbf{2}^{nd} \ \textbf{Edition} \end{array}$

Remarks Concerning the Expression of Certain Parameters of Must and Wine Composition

UNITS

Metric system units of length (m), volume (l) and weight (g) are exclusively used. The conversion of metric units into Imperial units (inches, feet, gallons, pounds, etc.) can be found in the following enological work: *Principles and practices of wine-making*, R.B. Boulton, V.L. Singleton, L.F. Bisson and R.E. Kunkee, 1995, The Chapman & Hall Enology Library, New York.

EXPRESSION OF TOTAL ACIDITY AND VOLATILE ACIDITY

Although EC regulations recommend the expression of total acidity in the equivalent weight of tartaric acid, the French custom is to give this expression in the equivalent weight of sulfuric acid. The

more correct expression in milliequivalents per liter has not been embraced in France. The expression of total and volatile acidity in the equivalent weight of sulfuric acid has been used predominantly throughout these works. In certain cases, the corresponding weight in tartaric acid, often used in other countries, has been given.

Using the weight of the milliequivalent of the various acids, the below table permits the conversion from one expression to another.

More particularly, to convert from total acidity expressed in H_2SO_4 to its expression in tartaric acid, add half of the value to the original value (4 g/l $H_2SO_4 \rightarrow 6$ g/l tartaric acid). In the other direction a third of the value must be subtracted.

The French also continue to express volatile acidity in equivalent weight of sulfuric acid. More generally, in other countries, volatile acidity is

Known Expression	Desired Expression			
	meq/l	g/l H ₂ SO ₄	g/l tartaric acid	g/l acetic acid
meq/l	1.00	0.049	0.075	0.060
g/l H ₂ SO ₄	20.40	1.00	1.53	1.22
g/l tartaric acid	13.33	0.65	1.00	
g/l acetic acid	16.67	0.82		1.00

Multiplier to pass from one expression of total or volatile acidity to another

expressed in acetic acid. It is rarely expressed in milliequivalents per liter. The below table also allows simple conversion from one expression to another.

The expression in acetic acid is approximately 20% higher than in sulfuric acid.

EVALUATING THE SUGAR CONCENTRATION OF MUSTS

This measurement is important for tracking grape maturation, fermentation kinetic and if necessary determining the eventual need for chaptalization.

This measurement is always determined by physical, densimetric or refractometric analysis. The expression of the results can be given according to several scales: some are rarely used, i.e. degree Baumé and degree Oechsle. Presently, two systems exist (Section 10.4.3):

- 1. The potential alcohol content (titre alcoométraque potential or TAP, in French) of musts can be read directly on equipment, which is graduated using a scale corresponding to 17.5 or 17 g/l of sugar for 1% volume of alcohol. Today, the EC recommends using 16.83 g/l as the conversion factor. The 'mustimeter' is a hydrometer containing two graduated scales: one expresses density and the other gives a direct reading of the TAP. Different methods varying in precision exist to calculate the TAP from a density reading. These methods take various elements of must composition into account (Boulton et al., 1995).
- 2. Degree Brix expresses the percentage of sugar in weight. By multiplying degree Brix by 10, the weight of sugar in 1 kg, or slightly less than 1 liter, of must is obtained. A conversion table between degree Brix and TAP exists in Section 10.4.3 of this book. 17 degrees Brix correspond to an approximate TAP of 10% and 20 degrees Brix correspond to a TAP of about 12%. Within the alcohol range most relevant to enology, degree Brix can be multiplied by 10

and then divided by 17 to obtain a fairly good approximation of the TAP.

In any case, the determination of the Brix or TAP of a must is approximate. First of all, it is not always possible to obtain a representative grape or must sample for analysis. Secondly, although physical, densimetric or refractometric measurements are extremely precise and rigorously express the sugar concentration of a sugar and water mixture, these measurements are affected by other substances released into the sample from the grape and other sources. Furthermore, the concentrations of these substances are different for every grape or grape must sample. Finally, the conversion rate of sugar into alcohol (approximately 17 to 18 g/l) varies and depends on fermentation conditions and yeast properties. The widespread use of selected yeast strains has lowered the sugar conversion rate.

Measurements Using Visible and Ultraviolet Spectrometry

The measurement of optic density, absorbance, is widely used to determine wine color (Volume 2, Section 6.4.5) and total phenolic compounds concentration (Volume 2, Section 6.4.1). In these works, the optic density is noted as OD, OD 420 (yellow), OD 520 (red), OD 620 (blue) or OD 280 (absorption in ultraviolet spectrum) to indicate the optic density at the indicated wavelengths.

Wine color intensity is expressed as:

$$CI = OD 420 + OD 520 + OD 620$$
,

Or is sometimes expressed in a more simplified form: CI = OD 420 + OD 520.

Tint is expressed as:

$$T = \frac{\text{OD } 420}{\text{OD } 520}$$

The total phenolic compound concentration is expressed by OD 280.

The analysis methods are described in Chapter 6 of *Handbook of Enology Volume 2, The Chemistry of Wine.*

Preface to the First Edition

Wine has probably inspired more research and publications than any other beverage or food. In fact, through their passion for wine, great scientists have not only contributed to the development of practical enology but have also made discoveries in the general field of science.

A forerunner of modern enology, Louis Pasteur developed simplified contagious infection models for humans and animals based on his observations of wine spoilage. The following quote clearly expresses his theory in his own words: 'when profound alterations of beer and wine are observed because these liquids have given refuge to microscopic organisms, introduced invisibly and accidentally into the medium where they then proliferate, how can one not be obsessed by the thought that a similar phenomenon can and must sometimes occur in humans and animals.'

Since the 19th century, our understanding of wine, wine composition and wine transformations has greatly evolved in function of advances in relevant scientific fields i.e. chemistry, biochemistry, microbiology. Each applied development has lead to better control of winemaking and aging conditions and of course wine quality. In order to continue this approach, researchers and winemakers must strive to remain up to date with the latest scientific and technical developments in enology.

For a long time, the Bordeaux school of enology was largely responsible for the communication of progress in enology through the publication of numerous works (Béranger Publications and later Dunod Publications):

Wine Analysis U. Gayon and J. Laborde (1912); Treatise on Enology J. Ribéreau-Gayon (1949); Wine Analysis J. Ribéreau-Gayon and E. Peynaud (1947 and 1958); Treatise on Enology (2 Volumes) J. Ribéreau-Gayon and E. Peynaud (1960 and 1961); Wine and Winemaking E. Peynaud (1971 and 1981); Wine Science and Technology (4 volumes) J. Ribéreau-Gayon, E. Peynaud, P. Ribéreau-Gayon and P. Sudraud (1975–1982).

For an understanding of current advances in enology, the authors propose this book *Handbook* of Enology Volume 1: The Microbiology of Wine and Vinifications and the second volume of the Handbook of Enology Volume 2: The Chemistry of Wine: Stabilization and Treatments.

Although written by researchers, the two volumes are not specifically addressed to this group. Young researchers may, however, find these books useful to help situate their research within a particular field of enology. Today, the complexity of modern enology does not permit a sole researcher to explore the entire field.

These volumes are also of use to students and professionals. Theoretical interpretations as well as solutions are presented to resolve the problems encountered most often at wineries. The authors have adapted these solutions to many different situations and winemaking methods. In order to make the best use of the information contained in these works, enologists should have a broad understanding of general scientific knowledge. For example, the understanding and application of molecular biology and genetic engineering have become indispensable in the field of wine microbiology. Similarly, structural and quantitative physiochemical analysis methods such as chromatography,

Preface to the First Edition

NMR and mass spectrometry must now be mastered in order to explore wine chemistry.

The goal of these two works was not to create an exhaustive bibliography of each subject. The authors strove to choose only the most relevant and significant publications to their particular field of research. A large number of references to French enological research has been included in these works in order to make this information available to a larger non-French-speaking audience.

In addition, the authors have tried to convey a French and more particularly a Bordeaux perspective of enology and the art of winemaking. The objective of this perspective is to maximize the potential quality of grape crops based on the specific natural conditions that constitute their 'terroir'. The role of enology is to express the characteristics of the grape specific not only to variety and vineyard practices but also maturation conditions, which are dictated by soil and climate.

It would, however, be an error to think that the world's greatest wines are exclusively a result of tradition, established by exceptional natural conditions, and that only the most ordinary wines, produced in giant processing facilities, can benefit from scientific and technological progress. Certainly, these facilities do benefit the most from high performance installations and automation of operations. Yet, history has unequivocally shown that the most important enological developments in wine quality (for example, malolactic fermentation) have been discovered in ultra premium wines. The corresponding techniques were then applied to less prestigious products.

High performance technology is indispensable for the production of great wines, since a lack of control of winemaking parameters can easily compromise their quality, which would be less of a problem with lower quality wines.

The word 'vinification' has been used in this work and is part of the technical language of the French tradition of winemaking. Vinification describes the first phase of winemaking. It comprises all technical aspects from grape maturity and harvest to the end of alcoholic and sometimes malolactic fermentation. The second phase of winemaking 'winematuration, stabilization and

treatments' is completed when the wine is bottled. Aging specifically refers to the transformation of bottled wine.

This distinction of two phases is certainly the result of commercial practices. Traditionally in France, a vine grower farmed the vineyard and transformed grapes into an unfinished wine. The wine merchant transferred the bulk wine to his cellars, finished the wine and marketed the product, preferentially before bottling. Even though most wines are now bottled at the winery, these longstanding practices have maintained a distinction between 'wine grower enology' and 'wine merchant enology'. In countries with a more recent viticultural history, generally English speaking, the vine grower is responsible for winemaking and wine sales. For this reason, the Anglo-Saxon tradition speaks of winemaking, which covers all operations from harvest reception to bottling.

In these works, the distinction between 'vinification' and 'stabilization and treatments' has been maintained, since the first phase primarily concerns microbiology and the second chemistry. In this manner, the individual operations could be linked to their particular sciences. There are of course limits to this approach. Chemical phenomena occur during vinification; the stabilization of wines during storage includes the prevention of microbial contamination.

Consequently, the description of the different steps of enology does not always obey logic as precise as the titles of these works may lead to believe. For example, microbial contamination during aging and storage are covered in Volume 1. The antiseptic properties of SO₂ incited the description of its use in the same volume. This line of reasoning lead to the description of the antioxidant related chemical properties of this compound in the same chapter as well as an explanation of adjuvants to sulfur dioxide: sorbic acid (antiseptic) and ascorbic acid (antioxidant). In addition, the on lees aging of white wines and the resulting chemical transformations cannot be separated from vinification and are therefore also covered in Volume 1. Finally, our understanding of phenolic compounds in red wine is based on complex chemistry. All aspects related to the nature of the Preface to the First Edition xi

corresponding substances, their properties and their evolution during grape maturation, vinification and aging are therefore covered in Volume 2.

These works only discuss the principles of equipment used for various enological operations and their effect on product quality. For example, temperature control systems, destemmers, crushers and presses as well as filters, inverse osmosis machines and ion exchangers are not described in detail. Bottling is not addressed at all. An in-depth description of enological equipment would merit a detailed work dedicated to the subject.

Wine tasting, another essential role of the winemaker, is not addressed in these works. Many related publications are, however, readily available. Finally, wine analysis is an essential tool that a winemaker should master. It is, however, not covered in these works except in a few particular

cases i.e. phenolic compounds, whose different families are often defined by analytical criteria.

The authors thank the following people who have contributed to the creation of this work: J.F. Casas Lucas, Chapter 14, Sherry; A. Brugirard, Chapter 14, Sweet wines; J.N. de Almeida, Chapter 14, Port wines; A. Maujean, Chapter 14, Champagne; C. Poupot for the preparation of material in Chapters 1, 2 and 13; Miss F. Luye-Tanet for her help with typing.

They also thank Madame B. Masclef in particular for her important part in the typing, preparation and revision of the final manuscript.

Pascal Ribéreau-Gayon Bordeaux

Preface to the Second Edition

The two-volume Enology Handbook was published simultaneously in Spanish, French, and Italian in 1999 and has been reprinted several times. The Handbook has apparently been popular with students as an educational reference book, as well as with winemakers, as a source of practical solutions to their specific technical problems and scientific explanations of the phenomena involved.

It was felt appropriate at this stage to prepare an updated, reviewed, corrected version, including the latest enological knowledge, to reflect the many new research findings in this very active field. The outline and design of both volumes remain the same. Some chapters have changed relatively little as the authors decided there had not been any significant new developments, while others have been modified much more extensively, either to clarify and improve the text, or, more usually, to include new research findings and their practical applications. Entirely new sections have been inserted in some chapters.

We have made every effort to maintain the same approach as we did in the first edition, reflecting the ethos of enology research in Bordeaux. We use indisputable scientific evidence in microbiology, biochemistry, and chemistry to explain the details of mechanisms involved in grape ripening, fermentations and other winemaking operations, aging, and stabilization. The aim is to help winemakers achieve greater control over the various stages in winemaking and choose the solution best suited to each situation. Quite remarkably, this scientific approach, most intensively applied in making the finest wines, has resulted in an enhanced capacity to bring out the full quality and character of

individual *terroirs*. Scientific winemaking has not resulted in standardization or leveling of quality. On the contrary, by making it possible to correct defects and eliminate technical imperfections, it has revealed the specific qualities of the grapes harvested in different vineyards, directly related to the variety and *terroir*, more than ever before.

Interest in wine in recent decades has gone beyond considerations of mere quality and taken on a truly cultural dimension. This has led some people to promote the use of a variety of techniques that do not necessarily represent significant progress in winemaking. Some of these are simply modified forms of processes that have been known for many years. Others do not have a sufficiently reliable scientific interpretation, nor are their applications clearly defined. In this Handbook, we have only included rigorously tested techniques, clearly specifying the optimum conditions for their utilization.

As in the previous edition, we deliberately omitted three significant aspects of enology: wine analysis, tasting, and winery engineering. In view of their importance, these topics will each be covered in separate publications.

The authors would like to take the opportunity of the publication of this new edition of Volume 1 to thank all those who have contributed to updating this work:

- Marina Bely for her work on fermentation kinetics (Section 3.4) and the production of volatile acidity (Sections 2.3.4 and 14.2.5)
- Isabelle Masneuf for her investigation of the yeasts' nitrogen supply (Section 3.4.2)

- Gilles de Revel for elucidating the chemistry of SO₂, particularly, details of combination reactions (Section 8.4)
- Gilles Masson for the section on rosé wines (Section 14.1)
- Cornelis Van Leeuwen for data on the impact of vineyard water supply on grape ripening (Section 10.4.6)
- André Brugirard for the section on French fortified wines—vins doux naturels (Section 14.4.2)

- Paulo Barros and Joa Nicolau de Almeida for their work on Port (Section 14.4.3)
- Justo. F. Casas Lucas for the paragraph on Sherry (Section 14.5.2)
- Alain Maujean for his in-depth revision of the section on Champagne (Section 14.3).

March 17, 2005

Professor Pascal RIBEREAU-GAYON Corresponding Member of the Institute Member of the French Academy of Agriculture

Contents

Remarks Concerning the Expression of Certain Parameters of Must and Wine Compo Preface to the First Edition Preface to the Second Edition	osition vi ix xii
1 Cytology, Taxonomy and Ecology of Grape and Wine Yeasts	J
2 Biochemistry of Alcoholic Fermentation and Metabolic Pathways of Wine Yeasts	53
3 Conditions of Yeast Development	79
4 Lactic Acid Bacteria	115
5 Metabolism of Lactic Acid Bacteria	139
6 Lactic Acid Bacteria Development in Wine	161
7 Acetic Acid Bacteria	183
8 The Use of Sulfur Dioxide in Must and Wine Treatment	193
9 Products and Methods Complementing the Effect of Sulfur Dioxide	223
10 The Grape and its Maturation	241
11 Harvest and Pre-Fermentation Treatments	299
12 Red Winemaking	327
13 White Winemaking	393
14 Other Winemaking Methods	445
Index	48

Cytology, Taxonomy and Ecology of Grape and Wine Yeasts

1.1 Introduction	1
1.2 The cell wall	3
1.3 The plasmic membrane	7
1.4 The cytoplasm and its organelles	11
1.5 The nucleus	14
1.6 Reproduction and the yeast biological cycle	15
1.7 The killer phenomenon	19
1.8 Classification of yeast species	22
1.9 Identification of wine yeast strains	35
1.10 Ecology of grape and wine yeasts	40

1.1 INTRODUCTION

Man has been making bread and fermented beverages since the beginning of recorded history. Yet the role of yeasts in alcoholic fermentation, particularly in the transformation of grapes into wine, was only clearly established in the middle of the nineteenth century. The ancients explained the boiling during fermentation (from the Latin fervere, to boil) as a reaction between substances

that come into contact with each other during crushing. In 1680, a Dutch cloth merchant, Antonie van Leeuwenhoek, first observed yeasts in beer wort using a microscope that he designed and produced. He did not, however, establish a relationship between these corpuscles and alcoholic fermentation. It was not until the end of the eighteenth century that Lavoisier began the chemical study of alcoholic fermentation. Gay-Lussac continued Lavoisier's research into the next century.

As early as 1785, Fabroni, an Italian scientist, was the first to provide an interpretation of the chemical composition of the ferment responsible for alcoholic fermentation, which he described as a plant-animal substance. According to Fabroni, this material, comparable to the gluten in flour, was located in special utricles, particularly on grapes and wheat, and alcoholic fermentation occurred when it came into contact with sugar in the must. In 1837, a French physicist named Charles Cagnard de La Tour proved for the first time that the yeast was a living organism. According to his findings, it was capable of multiplying and belonged to the plant kingdom; its vital activities were at the base of the fermentation of sugar-containing liquids. The German naturalist Schwann confirmed his theory and demonstrated that heat and certain chemical products were capable of stopping alcoholic fermentation. He named the beer yeast zuckerpilz, which means sugar fungus-Saccharomyces in Latin. In 1838, Meven used this nomenclature for the first time.

This vitalist or biological viewpoint of the role of yeasts in alcoholic fermentation, obvious to us today, was not readily supported. Liebig and certain other organic chemists were convinced that chemical reactions, not living cellular activity, were responsible for the fermentation of sugar. In his famous studies on wine (1866) and beer (1876), Louis Pasteur gave definitive credibility to the vitalist viewpoint of alcoholic fermentation. He demonstrated that the yeasts responsible for spontaneous fermentation of grape must or crushed grapes came from the surface of the grape; he isolated several races and species. He even conceived the notion that the nature of the yeast carrying out the alcoholic fermentation could influence the gustatory characteristics of wine. He also demonstrated the effect of oxygen on the assimilation of sugar by yeasts. Louis Pasteur proved that the yeast produced secondary products such as glycerol in addition to alcohol and carbon dioxide.

Since Pasteur, yeasts and alcoholic fermentation have incited a considerable amount of research, making use of progress in microbiology,

biochemistry and now genetics and molecular biology.

In taxonomy, scientists define yeasts as unicellular fungi that reproduce by budding and binary fission. Certain pluricellular fungi have a unicellular stage and are also grouped with yeasts. Yeasts form a complex and heterogeneous group found in three classes of fungi, characterized by their reproduction mode: the sac fungi (Ascomycetes), the club fungi (Basidiomycetes), and the imperfect fungi (Deuteromycetes). The yeasts found on the surface of the grape and in wine belong to Ascomycetes and Deuteromycetes. The haploid spores or ascospores of the Ascomycetes class are contained in the ascus, a type of sac made from vegetative cells. Asporiferous yeasts, incapable of sexual reproduction, are classified with the imperfect fungi.

In this first chapter, the morphology, reproduction, taxonomy and ecology of grape and wine yeasts will be discussed. Cytology is the morphological and functional study of the structural components of the cell (Rose and Harrison, 1991).

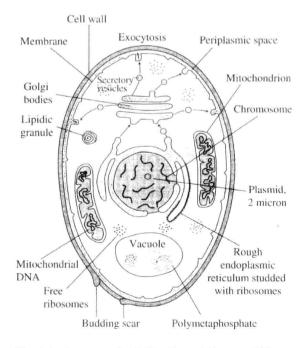


Fig. 1.1. A yeast cell (Gaillardin and Heslot, 1987)

Yeasts are the most simple of the eucaryotes. The yeast cell contains cellular envelopes, a cytoplasm with various organelles, and a nucleus surrounded by a membrane and enclosing the chromosomes. (Figure 1.1). Like all plant cells, the yeast cell has two cellular envelopes: the cell wall and the membrane. The periplasmic space is the space between the cell wall and the membrane. The cytoplasm and the membrane make up the protoplasm. The term protoplast or sphaeroplast designates a cell whose cell wall has been artificially removed. Yeast cellular envelopes play an essential role: they contribute to a successful alcoholic fermentation and release certain constituents which add to the resulting wine's composition. In order to take advantage of these properties, the winemaker or enologist must have a profound knowledge of these organelles.

1.2 THE CELL WALL

1.2.1 The General Role of the Cell Wall

During the last 20 years, researchers (Fleet, 1991; Klis, 1994; Stratford, 1999; Klis *et al.*, 2002) have greatly expanded our knowledge of the yeast cell wall, which represents 15–25% of the dry weight of the cell. It essentially consists of polysaccharides. It is a rigid envelope, yet endowed with a certain elasticity.

Its first function is to protect the cell. Without its wall, the cell would burst under the internal osmotic pressure, determined by the composition of the cell's environment. Protoplasts placed in pure water are immediately lysed in this manner. Cell wall elasticity can be demonstrated by placing yeasts, taken during their log phase, in a hypertonic (NaCl) solution. Their cellular volume decreases by approximately 50%. The cell wall appears thicker and is almost in contact with the membrane. The cells regain their initial form after being placed back into an isotonic medium.

Yet the cell wall cannot be considered an inert, semi-rigid 'armor'. On the contrary, it is a dynamic and multifunctional organelle. Its composition and functions evolve during the life of the cell, in response to environmental factors. In addition to its protective role, the cell wall gives the cell its particular shape through its macromolecular organization. It is also the site of molecules which determine certain cellular interactions such as sexual union, flocculation, and the killer factor, which will be examined in detail later in this chapter (Section 1.7). Finally, a number of enzymes, generally hydrolases, are connected to the cell wall or situated in the periplasmic space. Their substrates are nutritive substances of the environment and the macromolecules of the cell wall itself, which is constantly reshaped during cellular morphogenesis.

1.2.2 The Chemical Structure and Function of the Parietal Constituents

The yeast cell wall is made up of two principal constituents: β -glucans and mannoproteins. Chitin represents a minute part of its composition. The most detailed work on the yeast cell wall has been carried out on *Saccharomyces cerevisiae*—the principal yeast responsible for the alcoholic fermentation of grape must.

Glucan represents about 60% of the dry weight of the cell wall of *S. cerevisiae*. It can be chemically fractionated into three categories:

- Fibrous β-1,3 glucan is insoluble in water, acetic acid and alkali. It has very few branches.
 The branch points involved are β-1,6 linkages. Its degree of polymerization is 1500. Under the electron microscope, this glucan appears fibrous. It ensures the shape and the rigidity of the cell wall. It is always connected to chitin.
- 2. Amorphous β -1,3 glucan, with about 1500 glucose units, is insoluble in water but soluble in alkalis. It has very few branches, like the preceding glucan. In addition to these few branches, it is made up of a small number of β -1,6 glycosidic linkages. It has an amorphous aspect under the electron microscope. It gives the cell wall its elasticity and acts as an anchor for the mannoproteins. It can also constitute an extraprotoplasmic reserve substance.

3. The β-1,6 glucan is obtained from alkalinsoluble glucans by extraction in acetic acid. The resulting product is amorphous, water soluble, and extensively ramified by β-1,3 glycosidic linkages. Its degree of polymerization is 140. It links the different constituents of the cell wall together. It is also a receptor site for the killer factor.

The fibrous β -1,3 glucan (alkali-insoluble) probably results from the incorporation of chitin on the amorphous β -1,3 glucan.

Mannoproteins constitute 25-50% of the cell wall of S. cerevisiae. They can be extracted from the whole cell or from the isolated cell wall by chemical and enzymatic methods. Chemical methods make use of autoclaving in the presence of alkali or a citrate buffer solution at pH 7. The enzymatic method frees the mannoproteins by digesting the glucan. This method does not denature the structure of the mannoproteins as much as chemical methods. Zymolyase, obtained from the bacterium Arthrobacter luteus. is the enzymatic preparation most often used to extract the parietal mannoproteins of S. cerevisiae. This enzymatic complex is effective primarily because of its β -1,3 glucanase activity. The action of protease contaminants in the zymolyase combine, with the aforementioned activity to liberate the mannoproteins. Glucanex, another industrial preparation of the β -glucanase, produced by a fungus (Trichoderma harzianum), has been recently demonstrated to possess endo- and $exo-\beta-1.3$ and endo-β-1,6-glucanase activities (Dubourdieu and Moine, 1995). These activities also facilitate the extraction of the cell wall mannoproteins of the S. cerevisiae cell.

The mannoproteins of *S. cerevisiae* have a molecular weight between 20 and 450 kDa. Their degree of glycosylation varies. Certain ones containing about 90% mannose and 10% peptides are hypermannosylated.

Four forms of glycosylation are described (Figure 1.2) but do not necessarily exist at the same time in all of the mannoproteins.

The mannose of the mannoproteins can constitute short, linear chains with one to five residues.

They are linked to the peptide chain by O-glycosyl linkages on serine and threonine residues. These glycosidic side-chain linkages are α -1,2 and α -1,3.

The glucidic part of the mannoprotein can also be a polysaccharide. It is linked to an asparagine residue of the peptide chain by an N-glycosyl linkage. This linkage consists of a double unit of N-acetylglucosamine (chitin) linked in β -1,4. The mannan linked in this manner to the asparagine includes an attachment region made up of a dozen mannose residues and a highly ramified outer chain consisting of 150 to 250 mannose units. The attachment region beyond the chitin residue consists of a mannose skeleton linked in α -1,6 with side branches possessing one, two or three mannose residues with α -1,2 and/or α -1,3 bonds. The outer chain is also made up of a skeleton of mannose units linked in α -1,6. This chain bears short side-chains constituted of mannose residues linked in α -1,2 and a terminal mannose in α -1,3. Some of these side-chains possess a branch attached by a phosphodiester bond.

A third type of glycosylation was described more recently. It can occur in mannoproteins, which make up the cell wall of the yeast. It consists of a glucomannan chain containing essentially mannose residues linked in α -1,6 and glucose residues linked in α -1,6. The nature of the glycan–peptide point of attachment is not yet clear, but it may be an asparaginyl–glucose bond. This type of glycosylation characterizes the proteins freed from the cell wall by the action of a β -1,3 glucanase. Therefore, *in vivo*, the glucomannan chain may also comprise glucose residues linked in β -1,3.

The fourth type of glycosylation of yeast mannoproteins is the glycosyl-phosphatidyl-inositol anchor (GPI). This attachment between the terminal carboxylic group of the peptide chain and a membrane phospholipid permits certain mannoproteins, which cross the cell wall, to anchor themselves in the plasmic membrane. The region of attachment is characterized by the following sequence (Figure 1.2): ethanolamine-phosphate-6-mannose- α -1,2-mannose- α -1,6-mannose- α -1,4-glucosamine- α -1,6-inositol-phospholipid. A C-phospholipase specific to phosphatidyl inositol and therefore capable of realizing this cleavage

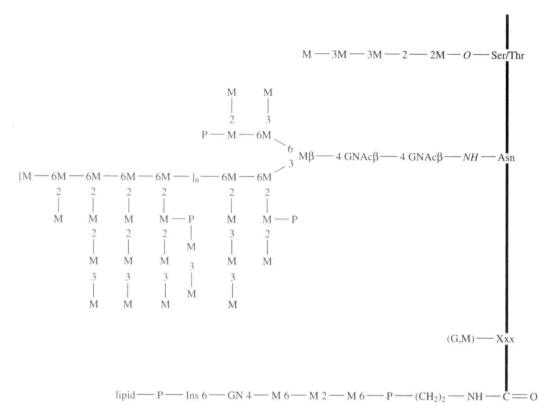
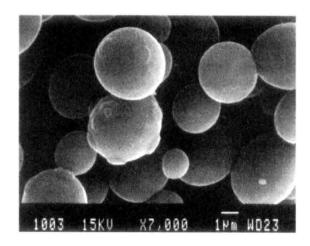



Fig. 1.2. The four types of glucosylation of parietal yeast mannoproteins (Klis, 1994). M = mannose; G = glucose; GN = glucosamine; GNAc = N-acetylglucosamine; Ins = inositol; Ser = Serine; Thr = threonine; Asn = asparagine; Xxx = the nature of the bond is not known

was demonstrated in the *S. cerevisiae* (Flick and Thorner, 1993). Several GPI-type anchor mannoproteins have been identified in the cell wall of *S. cerevisiae*.

Chitin is a linear polymer of N-acetylglucosamine linked in β -1,4 and is not generally found in large quantities in yeast cell walls. In S. cerevisiae, chitin constitutes 1-2% of the cell wall and is found for the most part (but not exclusively) in bud scar zones. These zones are a type of raised crater easily seen on the mother cell under the electron microscope (Figure 1.3). This chitinic scar is formed essentially to assure cell wall integrity and cell survival. Yeasts treated with D polyoxine, an antibiotic inhibiting the synthesis of chitin, are not viable; they burst after budding.

The presence of lipids in the cell wall has not been clearly demonstrated. It is true that cell walls

Fig. 1.3. Scanning electron microscope photograph of proliferating *S. cerevisiae* cells. The budding scars on the mother cells can be observed