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Preface

The power of supramolecular assembly strategies, where mostly non-
covalent interactions between individual building blocks are exploited, to
form well-defined two- and three-dimensional architectures is impressive.
Careful design of molecules to facilitate directed hydrogen-bonding, n-n,
and electrostatic interactions can lead to hierarchically ordered structures
spanning the nano- to the macroscale. In addition, covalent bonds between
molecules are used to form supramolecular assemblies, and the properties
of the subunits can be largely retained by keeping their direct electronic
coupling strength low. In an overarching scheme, complex multi-component
structures are assembled first and subsequently locked into position by
initiating covalent bonds. Achieving an appropriate balance of all inter-
molecular forces to reach the desired bulk structures is challenging.

When aiming to use supramolecular systems in electronic and opto-
electronic devices, such as transistors, light emitting diodes, photovoltaic
cells, and memory elements, the challenges increase rapidly. Key for device
functionality is the proper combination of conducting, semiconducting, and
insulating materials, some or even all of which may be provided for by
supramolecular assemblies and on various length scales. Furthermore,
typical device structures are composed of numerous layers of materials and
it has transpired that the interfaces between layers are of paramount
importance for device performance.

Consequently, the interaction between a substrate - often an electrode -
and the assembly building blocks introduces another degree of freedom for
steering structure formation, which thus differs from the bulk. The same
holds when considering the formation of heterojunctions of different
supramolecular materials, where adverse side effects such as intermixing
and induced orientations may occur. In addition, since opto-electronic
components are two- or multi-terminal devices, the question of how
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vi Preface

electronic equilibrium across the entire layer stack is established must be
addressed. We can think of the stack as a sequence of materials with varying
energy gaps (i.e., semiconductors), where the alignment of energy levels to a
common Fermi-level may introduce space charges, mostly close to the
interfaces. This induced charge density represents yet another source of
interaction that influences the supramolecular structure formation.

For opto-electronic functionality, the requirements regarding structural
perfection are tremendous. Every defect will widen the energy spread of the
density of states where charge carrier transport takes place, thus reducing
carrier mobility. Furthermore, radiative exciton recombination, e.g., in a
light emitting diode, can be tremendously reduced by defects, particularly
trapped charges. Therefore, the envisioned devices require either extreme
structure control or, at least, fault-tolerant architectures must be
implemented.

To comprehensively understand supramolecular materials for opto-
electronic applications and to derive reliable material design guidelines,
experiment and theory must go hand in hand. True multiscale modeling
must be applied, starting from an ab initio approach for the building blocks
or moderately large assemblies to unravel fundamental electronic and
optical properties, and continuing to larger length- and time-scales through
parameterization of electrons and eventually atoms to predict structure
formation up to device-relevant scales.

All these topics and challenges are discussed in the chapters of this book.
Experts, who define the frontiers of the respective fields, present state-of-the-
art understanding of supramolecular assemblies consisting of conjugated
molecular moieties to achieve opto-electronic functionality, and show
how these formidable challenges are presently tackled. Research towards
supramolecular systems for opto-electronics remains vivid and will benefit
from increasingly tight interactions of chemistry, physics, material science,
and electrical engineering.

Norbert Koch
Berlin
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CHAPTER 1

Self-assembled Supramolecular
Materials in Organic
Electronics

EMILIE MOULIN, ERIC BUSSERON AND
NICOLAS GIUSEPPONE*

SAMS Research Group - University of Strasbourg - Institut Charles Sadron,
CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
*Email: giuseppone@unistra.fr

1.1 Introduction

Organic electronics’ is of great fundamental interest in materials science
and is also recognized as one of the most promising and competitive
markets for industry. In particular, its expansion will be supported by the
development of active components being easily processable, flexible, energy
friendly, cheap, and compatible with their downscaling towards nano-
devices. In this research field, high-molecular-weight conjugated polymers
in the form of thin plastic films are easy to synthesize and to process for
incorporation in devices.> However, these materials show limitations in the
precise ordering of their crystalline layers in the bulk, thus impacting
the mobilities of charge-carriers required for enhanced performances.
Conversely, recrystallization or vapor-phase deposition of low-molecular-
weight m-conjugated organic molecules leads to 100% crystalline orientation,
but single crystals are impractical to process.® At the smallest scales, the
very intriguing electronic properties of single molecules have also been
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2 Chapter 1

demonstrated, but problems arise from contacts with the electrodes and
from thermal noise producing undesired orientation and conformational
motions.*

Quite recently, so-called supramolecular electronics® has been proposed
as a promising intermediary-scale approach that rests on the design of
electronic components at a length of 5-100 nm, that is, between plastic
electronics (um) and molecular electronics (A). Supramolecular engineering,
which programs self-assembly processes under thermodynamic control,®’
represents a key bottom-up strategy to build and process relatively
soft functional objects while introducing “pseudo-crystalline” electroactive
domains corresponding to this typical intermediate length scale. In the past
ten years, since the seminal works of several groups who demonstrated the
potential of this approach with supramolecular assemblies such as gels and
liquid crystals, several soft nanoribbons, nanotubes, nanorods, and nano-
wires of low dimensionality have been designed and incorporated into or-
ganic electronic devices.> In the following sections, we discuss some recent
examples of supramolecular electroactive nanostructures displaying various
electronic properties such as conducting materials, field-effect transistors,
light-emitting diodes, and photovoltaic devices. Within each of these sec-
tions, electroactive self-assemblies are classified along with the molecular
structure of their components.

1.2 Conducting Supramolecular Materials

This section specifically focuses on soft self-assemblies made of small
organic molecules, or of short monodisperse oligomers, and yielding to
n-stacked one-dimensional (1D) conducting nano-objects with high aspect
ratio, a geometry attracting much attention for its crucial impact on
advanced nanosciences.'® These supramolecular structures are classified
according to their chemical composition, such as for instance: (i) thiol-based
heterocycles such as thiophenes and tetrathiafulvalenes (TTFs); (ii) nitrogen-
containing heterocyclic molecules; (iii) aromatic molecules including
perylene-tetracarboxylic diimides (PTCDIs), fluorenes, anthracenes, and
hexabenzocoronenes (HBCs); derivatives; and (iv) triarylamines. For each
category, we shall emphasize the most remarkable advances achieved in the
recent literature regarding three interlinked aspects of crucial importance
for further developments in organic electronics: structure, conductivity
properties, and processability.

1.2.1 Thiophene Derivatives

Conjugated polymers of thiophenes are among the best candidates for thin
film (opto)electronic devices because of their small band gap, their relatively
high charge carrier mobility, and their high quantum yield for fluorescence.
Feringa and van Esch first described an alternative supramolecular approach
in which bis-urea derivatives incorporating mono- or bis-thiophene spacers
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can self-assemble by hydrogen bonds into ribbons that enforce the
n-stacking of the central heterocycles.'’ Lamellar fibers with lengths of
20-100 pm and breadths of 2-10 um were imaged by electronic microscopy
and molecular modeling studies of the closely packed layers were also found
to be coherent with X-ray powder diffraction analyses. The charge mobility
properties of these materials were determined by a pulse radiolysis time-
resolved microwave conductivity technique (PR-TRMC) technique, which
minimizes effects of domain boundaries and impurities. The authors
measured values up to 5x10 > em® V' s, thus showing that supramole-
cular cofacial ordering provided by the bis-urea interactions can improve the
through-space mobility of charge carriers close to that measured in covalent
conjugated polythiophenes (7x10™* em® V™' s7'). Along the same lines,
other groups developed symmetric oligothiophene'? and oligo(thienylene-
vinylene)'?® derivatives with lateral hydrogen bond forming segments,
yielding conducting gels with values reaching 4x8 10> S m™* upon I, doping
and by solvent evaporation casting in a four-probe configuration. In these
cases, non-linear I/V curves indicate contact resistance due to a charge in-
jection barrier. All the aforementioned examples highlight the role of the
self-assembly and of the gelation process to achieve electronic properties
that can rival covalent conducting molecules.

Recently, the group of Barbarella described the synthesis of octa- and
tetrathioether-substituted octathiophenes and studied the morphology and
conductivity of the corresponding self-assemblies.'® Scanning electron
microscopy (SEM) and atomic force microscopy (AFM) imaging revealed that
the sulfur-overrich molecule formed superhelices and even double helices of
superhelices with lengths ranging from 100 nm up to 5 um whereas the
core tetra-substituted molecule formed tape-like fibrils of similar lengths.
Both types of fibers grown on ITO (indium tin oxide) were then analyzed
by tunneling atomic force microscopy in torsion mode (Tr-TUNA), which
allows simultaneous surface topography and nanoscale conductivity meas-
urement. Finally, charge carrier mobilities of both octathiophenes were
determined using conductive-AFM (C-AFM) (9.8x10" 7 em® V™' s~ ! for the
octa-substituted system versus 5 10°® ecm® V™' s7! for the tetra-substituted
one) and could be rationalized based on X-ray diffraction of the fibers films,
which shows that the presence of substituents on the outermost rings in-
duces disorder and therefore influences the distance between parallel
octathiophene rows.

In another approach, Stupp and co-workers'® achieved the self-assembly
of short oligothiophene rod-coils by conjugation to a dendron capable of
self-associating by hydrogen bonding. These molecules can be dissolved at
high temperature in toluene/THF mixtures and form birefringent gels
(1 wt%) after cooling at room temperature. These gels present blue-shifted
absorbance and red-shifted fluorescence compared to solutions, in agree-
ment with the formation of H-aggregates. A TEM (transmission electron
microscopy) micrograph illustrates the formation of ribbons with a width
of a single dendron dimer (9.7 4 0.3 nm), while AFM revealed a thickness of
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