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Preface

This book contains a collection of general mathematical results, formulas, and integrals that
occur throughout applications of mathematics. Many of the entries are based on the updated
fiftth edition of Gradshteyn and Ryzhik’s "Tables of Integrals, Series, and Products,” though
during the preparation of the book, results were also taken from various other reference works.
The material has been arranged in a straightforward manner, and for the convenience of the
user a quick reference list of the simplest and most frequently used results is to be found in
Chapter 0 at the front of the book. Tab marks have been added to pages to identify the twelve
main subject areas into which the entries have been divided and also to indicate the main
interconnections that exist between them. Keys to the tab marks are to be found inside the
front and back covers.

The Table of Contents at the front of the book is sufficiently detailed to enable rapid location
of the section in which a specific entry is to be found, and this information is supplemented by
a detailed index at the end of the book. In the chapters listing integrals, instead of displaying
them in their canonical form, as is customary in reference works, in order to make the tables
more convenient to use, the integrands are presented in the more general form in which they
are likely to arise. It is hoped that this will save the user the necessity of reducing a result to a
canonical form before consulting the tables. Wherever it might be helpful, material has been
added explaining the idea underlying a section or describing simple techniques that are often
useful in the application of its results.

Standard notations have been used for functions, and a list of these together with their
names and a reference to the section in which they occur or are defined is to be found at the
front of the book. As is customary with tables of indefinite integrals, the additive arbitrary
constant of integration has always been omitted. The result of an integration may take more
than one form, often depending on the method used for its evaluation, so only the most common
forms are listed.

A user requiring more extensive tables, or results involving the less familiar special functions,
is referred to the short classified reference list at the end of the book. The list contains works
the author found to be most useful and which a user is likely to find readily accessible in a
library, but it is in no sense a comprehensive bibliography. Further specialist references are to
be found in the bibliographies contained in these reference works.

Every effort has been made to ensure the accuracy of these tables and, whenever possible,
results have been checked by means of computer symbolic algebra and integration programs,
but the final responsibility for errors must rest with the author.

Xix



Preface to the Fourth Edition

The preparation of the fourth edition of this handbook provided the opportunity to
enlarge the sections on special functions and orthogonal polynomials, as suggested by many
users of the third edition. A number of substantial additions have also been made elsewhere,
like the enhancement of the description of spherical harmonics, but a major change is the
inclusion of a completely new chapter on conformal mapping. Some minor changes that have
been made are correcting of a few typographical errors and rearranging the last four chapters
of the third edition into a more convenient form. A significant development that occurred
during the later stages of preparation of this fourth edition was that my friend and colleague
Dr. Hui-Hui Dai joined me as a co-editor.

Chapter 30 on conformal mapping has been included because of its relevance to the solu-
tion of the Laplace equation in the plane. To demonstrate the connection with the Laplace
equation, the chapter is preceded by a brief introduction that demonstrates the relevance of
conformal mapping to the solution of boundary value problems for real harmonic functions
in the plane. Chapter 30 contains an extensive atlas of useful mappings that display, in the
usual diagrammatic way, how given analytic functions w = f(z) map regions of interest in the
complex z-plane onto corresponding regions in the complex w-plane, and conversely. By form-
ing composite mappings, the basic atlas of mappings can be extended to more complicated
regions than those that have been listed. The development of a typical composite mapping is
illustrated by using mappings from the atlas to construct a mapping with the property that a
region of complicated shape in the z-plane is mapped onto the much simpler region compris-
ing the upper half of the w-plane. By combining this result with the Poisson integral formula,
described in another section of the handbook, a boundary value problem for the original, more
complicated region can be solved in terms of a corresponding boundary value problem in the
simpler region comprising the upper half of the w-plane.

The chapter on ordinary differential equations has been enhanced by the inclusion of mate-
rial describing the construction and use of the Green’s function when solving initial and
boundary value problems for linear second order ordinary differential equations. More has
been added about the properties of the Laplace transform and the Laplace and Fourier con-
volution theorems, and the list of Laplace transform pairs has been enlarged. Furthermore,
because of their use with special techniques in numerical analysis when solving differential
equations, a new section has been included describing the Jacobi orthogonal polynomials. The
section on the Poisson integral formulas has also been enlarged, and its use is illustrated by an
example. A brief description of the Riemann method for the solution of hyperbolic equations
has been included because of the important theoretical role it plays when examining general
properties of wave-type equations, such as their domains of dependence.

For the convenience of users, a new feature of the handbook is a CD-ROM that contains
the classified lists of integrals found in the book. These lists can be searched manually, and
when results of interest have been located, they can be either printed out or used in papers or

xXi



xXii Preface

worksheets as required. This electronic material is introduced by a set of notes (also included in
the following pages) intended to help users of the handbook by drawing attention to different
notations and conventions that are in current use. If these are not properly understood, they
can cause confusion when results from some other sources are combined with results from
this handbook. Typically, confusion can occur when dealing with Laplace’s equation and other
second order linear partial differential equations using spherical polar coordinates because
of the occurrence of differing notations for the angles involved and also when working with
Fourier transforms for which definitions and normalizations differ. Some explanatory notes and
examples have also been provided to interpret the meaning and use of the inversion integrals
for Laplace and Fourier transforms.

Alan Jeffrey

alan.jeffrey@newcastle.ac.uk

Hui-Hui Dai
mahhdai@math.cityu.edu.hk



Notes for Handbook Users

The material contained in the fourth edition of the Handbook of Mathematical Formulas and
Integrals was selected because it covers the main areas of mathematics that find frequent use
in applied mathematics, physics, engineering, and other subjects that use mathematics. The
material contained in the handbook includes, among other topics, algebra, calculus, indefinite
and definite integrals, differential equations, integral transforms, and special functions.

For the convenience of the user, the most frequently consulted chapters are found on the
accompanying CD in a manually searchable format. The “lightbox” feature allows users to
print out individual results of interest.

A major part of the handbook concerns integrals, so it is appropriate that mention of these
should be made first. As is customary, when listing indefinite integrals, the arbitrary additive
constant of integration has always been omitted. The results concerning integrals that are
available in the mathematical literature are so numerous that a strict selection process had
to be adopted when compiling this work. The criterion used amounted to choosing those
results that experience suggested were likely to be the most useful in everyday applications of
mathematics. To economize on space, when a simple transformation can convert an integral
containing several parameters into one or more integrals with fewer parameters, only these
simpler integrals have been listed.

For example, instead of listing indefinite integrals like [e®*sin(bz + c)dz and [e*®
cos(bx + ¢)dz, each containing the three parameters a, b, and ¢, the simpler indefinite inte-
grals [e**sinbrdr and [e®” cosbzdr contained in entries 5.1.3.1(1) and 5.1.3.1(4) have
been listed. The results containing the parameter ¢ then follow after using additive prop-
erty of integrals with these tabulated entries, together with the trigonometric identities
sin(bx + ¢) = sin bx cos ¢ + cos bz sin ¢ and cos(bx + ¢) = cos bx cos c—sin bz sin c.

The order in which integrals are listed can be seen from the various section headings.
If a required integral is not found in the appropriate section, it is possible that it can be
transformed into an entry contained in the book by using one of the following elementary
methods:

Representing the integrand in terms of partial fractions.
Completing the square in denominators containing quadratic factors.
Integration using a substitution.

ol Sl

Integration by parts.

(&3

Integration using a recurrence relation (recursion formula),

xxiii



XxXiv Notes for Handbook Users

or by a combination of these. It must, however, always be remembered that not all integrals can
be evaluated in terms of elementary functions. Consequently, many simple looking integrals
cannot be evaluated analytically, as is the case with

" sinx
/ LI
a + be*

A Comment on the Use of Substitutions

When using substitutions, it is important to ensure the substitution is both continuous and
one-to-one, and to remember to incorporate the substitution into the dz term in the integrand.
When a definite integral is involved the substitution must also be incorporated into the limits
of the integral.

When an integrand involves an expression of the form va2?—=x2, it is usual to use the
substitution x = |asin#| which is equivalent to 6 = arcsin(z/ |a|), though the substitution
z = |a| cos @ would serve equally well. The occurrence of an expression of the form va? + 22 in
an integrand can be treated by making the substitution z = |a| tan 8, when 6 = arctan(z/ |a|)
(see also Section 9.1.1). If an expression of the form vz?—a? occurs in an integrand, the
substitution z = |a|sec can be used. Notice that whenever the square root occurs the positive
square root is always implied, to ensure that the function is single valued.

If a substitution involving either sinf or cosf is used, it is necessary to restrict 6 to a
suitable interval to ensure the substitution remains one-to-one. For example, by restricting 0
to the interval —%n <6< %n, the function sin # becomes one-to-one, whereas by restricting 6
to the interval 0 < 6 < m, the function cosf becomes one-to-one. Similarly, when the inverse
trigonometric function y = arcsin z is involved, equivalent to z = siny, the function becomes
one-to-one in its principal branch — %71 <y< %n, so arcsin(sinz) = z for —%7‘[ <z< %JT
and sin(arcsinz) =z for —1 < 2 < 1. Correspondingly, the inverse trigonometric function
y = arccos z, equivalently x = cosy, becomes one-to-one in its principal branch 0 <y < m,
so arccos(cosx) = z for 0 < x < 7 and sin(arccosz) = x for —1 <z < 1.

It is important to recognize that a given integral may have more than one representation,
because the form of the result is often determined by the method used to evaluate the integral.
Some representations are more convenient to use than others so, where appropriate, integrals
of this type are listed using their simplest representation. A typical example of this type is

i B arcsinh(z/a)
Va2 + 12 In (z + Va2 + 2?)

where the result involving the logarithmic function is usually the more convenient of the two
forms. In this handbook, both the inverse trigonometric and inverse hyperbolic functions all
carry the prefix “arc.” So, for example, the inverse sine function is written arcsin @ and the
inverse hyperbolic sine function is written arcsinh «, with corresponding notational conventions
for the other inverse trigonometric and hyperbolic functions. However, many other works
denote the inverse of these functions by adding the superscript ~! to the name of the function,
in which case arcsin z becomes sin~! z and arcsinh 2 becomes sinh ™! z. Elsewhere yet another
notation is in use where, instead of using the prefix “arc” to denote an inverse hyperbolic
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function, the prefix “arg” is used, so that arcsinh  becomes argsinh x, with the corresponding
use of the prefix “arg” to denote the other inverse hyperbolic functions. This notation is
preferred by some authors because they consider that the prefix “arc” implies an angle is
involved, whereas this is not the case with hyperbolic functions. So, instead, they use the
prefix “arg” when working with inverse hyperbolic functions.

. . P

Example: Find I = | ==z,

Of the two obvious substitutions x = |a|sinf and x = |a| cos§ that can be used, we will make
use of the first one, while remembering to restrict 6 to the interval —%n <6< %rr to ensure

the transformation is one-to-one. We have dz = |a| cos 8d6, while Va2 —2? = /a2 —a?sin’§ =
la| V/1—sin? 6 = |a cos|. However cosf is positive in the interval —%n <6< %71’, SO we may

set vVa?—x? = |a| cos 6. Substituting these results into the integrand of I gives

]_/|a|55in59|a|c080d9

4 .5
- 0do,
[a]cosd a |a[/sm

and this trigonometric integral can be found using entry 9.2.2.2, 5. This result can be expressed
in terms of z by using the fact that 6 = arcsin (z/ |a|), so that after some manipulation we find
that

2
I = —%z‘l\/ a?—z2 — %\/az—mz (2a2 + 132) .

A Comment on Integration by Parts

Integration by parts can often be used to express an integral in a simpler form, but it also has
another important property because it also leads to the derivation of a reduction formula,
also called a recursion relation. A reduction formula expresses an integral involving one or
more parameters in terms of a simpler integral of the same form, but with the parameters
having smaller values. Let us consider two examples in some detail, the second of which given
a brief mention in Section 1.15.3.

Example:

(a) Find a reduction formula for

Ly = / cos™ 6de,

and hence find an expression for I5.
(b) Modify the result to find a recurrence relation for

/2
Ny —— / cos™ 0do,
0

and use it to find expressions for .J,, when m is even and when it is odd.
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To derive the result for (a), write

4 d(sin )
Im = m—1 ——~df
/cos 0 7

= cos™ ! @sinf — /sin 6(m—1) cos™ 2 6(— sin 6)d6
= cos™ 1 @sinf+ (m—1) /cos"‘_2 6(1—cos’H)deo

=cos™ ' 9sin@+ (m—1) /cos"‘”z 6df — (m—1) /cosm 6de.

Combining terms and using the form of I,,,, this gives the reduction formula

cos™ 1 @sin b m—1
I, = + ( ) Im_a.
m m

we have I} = [cos6df = sinf. So using the expression for I;, setting m = 5 and using the
recurrence relation to step up in intervals of 2, we find that

1 2 1 2
I3 = §c0820s1n9+ 511 = gcos29+ gsin&

and hence that
1 4
Is = — cos*@sinf + —1I.
5 5cos sin 6 + 5 3
1 4 . 4
= 5 cos? Bsin 6 — B sin® @ + g sin 6.

The derivation of a result for (b) uses the same reasoning as in (a), apart from the fact that
the limits must be applied to both the integral, and also to the uv term in [udv = uv — [vdu,

so the result becomes [budv = (uv)Z — f: vdu. When this is done it leads to the result

I = (COSm_IOSiD9>”/2 N (m—l) Ty — (m—l) Ty
m =il m m

. . . . 2 .
When m is even, this recurrence relation links J,,, to Jy = 0”/ 1d6 = %71', and when m is odd,

it links J,,, to J; = fg /2 cos 0df = 1. Using these results sequentially in the recurrence relation,
we find that

5...(2n—-1)1
46(7;71 )En, (m = 2n is even)

and
2:4-6...2n

3.5-7...(2n+1)

Jont1 = (m =2n+1is odd).
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Example: The following is an example of a recurrence formula that contains two param-
eters. If I, , = [sin™ @cos™ 6dH, an argument along the lines of the one used in the previous
example, but writing

 p—— /sin""_1 0 cos™ Od(— cosb),

leads to the result
(m+n)lp, =—sin™ ' 0cos™ ™ 0+ (m—1)L_2.n,

in which n remains unchanged, but m decreases by 2.
Had integration by parts been used differently with I,, , written as

don = /Siancos"_1 6d(sin 6)

a different reduction formula would have been obtained in which m remains unchanged but n
decreases by 2.

Some Comments on Definite Integrals

Definite integrals evaluated over the semi-infinite interval [0, 00) or over the infinite interval
(—oc,00) are improper integrals and when they are convergent they can often be evaluated
by means of contour integration. However, when considering these improper integrals, it is
desirable to know in advance if they are convergent, or if they only have a finite value in
the sense of a Cauchy principal value. (see Section 1.15.4). A geometrical interpretation of
a Cauchy principal value for an integral of a function f(x) over the interval (—oo, 00) follows
by regarding an area between the curve y = f(z) and the z-axis as positive if it lies above the
z-axis and negative if it lies below it. Then, when finding a Cauchy principal value, the areas to
the left and right of the y-axis are paired off symmetrically as the limits of integration approach
+00. If the result is a finite number, this is the Cauchy principal value to be attributed to the
definite integral ffox f(x)dx, otherwise the integral is divergent. When an improper integral
is convergent, its value and its Cauchy principal value coincide.

There are various tests for the convergence of improper integrals, but the ones due to Abel
and Dirichlet given in Section 1.15.4 are the main ones. Convergent integrals exist that do
not satisfy all of the conditions of the theorems, showing that although these tests represent
sufficient conditions for convergence, they are not necessary ones.

Example: Let us establish the convergence of the improper integral f:o Sii‘[%md:c, given that
a,p > 0.

To use the Dirichlet test we set f(z)=sinz and g¢g(z) =1/xP. Then lim g(z) =0
and [ |g'(z)|dx = 1/aP is finite, so this integral involving g(z) converges. We also have
F(b) = fab sin madz =(cos ma — cosmb)/m, from which it follows that [F(b)| <2 for all
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a < x < b < co. Thus the conditions of the Dirichlet test are satisfied showing that f( ,oo S;”f dx
is convergent for a,p > 0.

It is necessary to exercise caution when using the fundamental theorem of calculus to
evaluate an improper integral in case the integrand has a singularity (becomes infinite) inside
the interval of integration. If this occurs the use of the fundamental theorem of calculus is
invalid.

Example: The improper integral | fa f—'f with @ > 0 has a singularity at the origin and is, in

5 2 . ( . —& 5 t .
fact, divergent. This follows because if €,§ > 0, we have 1111(1) f_a g—g + lim fa) % = oo. However,
£— 5—0

an incorrect application of the fundamental theorem of calculus gives jfa % = (—%)Z:ﬂ =
—%. Although this result is finite, it is obviously incorrect because the integrand is positive
over the interval of integration, so the definite integral must also be positive, but this is not
the case here because a > 0 so —2/a < 0.

Two simple results that often save time concern the integration of even and odd functions
f(x) over an interval —a < x < a that is symmetrical about the origin.

We have the obvious result that when f(z) is odd, that is when f(—z) = —f(z), then

/ fw)dz =0,

and when f(x) is even, that is when f(—z) = f(x), then

_a flz)dz =2 /0 " e

These simple results have many uses as, for example, when working with Fourier series and
elsewhere.

Some Comments on Notations, the Choice of Symbols, and Normalization
Unfortunately there is no universal agreement on the choice of symbols used to identify a
point P in cylindrical and spherical polar coordinates. Nor is there universal agreement on
the choice of symbols used to represent some special functions, or on the normalization of
Fourier transforms. Accordingly, before using results derived from other sources with those
given in this handbook, it is necessary to check the notations, symbols, and normalization
used elsewhere prior to combining the results.

Symbols Used with Curvilinear Coordinates
To avoid confusion, the symbols used in this handbook relating to plane polar coordinates,

cylindrical polar coordinates, and spherical polar coordinates are shown in the diagrams in
Section 24.3.
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The plane polar coordinates (r, ) that identify a point P in the (z, y)-plane are shown in
Figure 1(a). The angle 0 is the azimuthal angle measured counterclockwise from the z-axis
in the (z, y)-plane to the radius vector r drawn from the origin to the point P. The connection
between the Cartesian and the plane polar coordinates of P is given by x = rcos, y = rsiné,
with 0 < 0 < 2.

P(r, 0)

Figure 1(a)

We mention here that a different convention denotes the azimuthal angle in plane polar
coordinates by 6, instead of by ¢.

The cylindrical polar coordinates (r, 6, z) that identify a point P in space are shown in
Figure 1(b). The angle 6 is again the azimuthal angle measured as in plane polar coordinates,
r is the radial distance measured from the origin in the (x,y)-plane to the projection of P
onto the (z,y)-plane, and z is the perpendicular distance of P above the (x,y)-plane. The
connection between cartesian and cylindrical polar coordinates used in this handbook is given
by x =rcosf, y = rsinf and z = z, with 0 < 6 < 27.

P(r, 0,2)

bS]

Figure 1(b)
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Here also, in a different convention involving cylindrical polar coordinates, the azimuthal
angle is denoted by ¢ instead of by 6.

The spherical polar coordinates (7,0, ¢) that identify a point P in space are shown in Fig-
ure 1(c). Here, differently from plane cylindrical coordinates, the azimuthal angle measured
as in plane cylindrical coordinates is denoted by ¢, the radius r is measured from the origin to
point P, and the polar angle measured from the z-axis to the radius vector OP is denoted
by 6, with 0 < ¢ < 27, and 0 < 6 < 7. The cartesian and spherical polar coordinates used in
this handbook are connected by @ = rsinficos¢, y = rsinfsing, z = rcosf.

P(r, 0, ¢)

Figure 1(c)

In a different convention the roles of & and ¢ are interchanged, so the azimuthal angle is denoted
by 6, and the polar angle is denoted by ¢.

Bessel Functions

There is general agreement that the Bessel function of the first kind of order v is denoted
by J,(z), though sometimes the symbol v is reserved for orders that are not integral, in which
case n is used to denote integral orders. However, notations differ about the representation
of the Bessel function of the second kind of order v. In this handbook, a definition of
the Bessel function of the second kind is adopted that is true for all orders v (both integral
and fractional) and it is denoted by Y, (x). However, a widely used alternative notation for
this same Bessel function of the second kind of order v uses the notation N,(z). This choice
of notation, sometimes called the Neumann form of the Bessel function of the second
kind of order v, is used in recognition of the fact that it was defined and introduced by the
German mathematician Carl Neumann. His definition, but with Y, (z) in place of N, (), is given
in Section 17.2.2. The reason for the rather strange form of this definition is because when
the second linearly independent solution of Bessel’s equation is derived using the Frobenius
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method, the nature of the solution takes one form when v is an integer and a different one
when v is not an integer. The form of definition of Y(z) used here overcomes this difficulty
because it is valid for all v.

The recurrence relations for all Bessel functions can be written as

Zva(&) + Zua(a) = 2 20(0),
Zy1(2) = Zy1 () = 2Z}(2),
Zy(2) = Zvr(x) = ZZu(o)
Z)(@) = ~Zuon (@) + 2 Z(a),

where Z,(z) can be either J,(z) or Y,(z). Thus any recurrence relation derived from these

results will apply to all Bessel functions. Similar general results exist for the modified Bessel
functions I,(z) and K,(z).

Normalization of Fourier Transforms

The convention adopted in this handbook is to define the Fourier transform of a function
f(x) as the function F(w) where

F(w) = \%2_” / " fa)eevdn, @)

when the inverse Fourier transform becomes

1 o —iwT
flo) = <= / Pl do, (3)

where the normalization factor multiplying each integral in this Fourier transform pair is
1/ V2. However other conventions for the normalization are in common use, and they follow
from the requirement that the product of the two normalization factors in the Fourier and
inverse Fourier transforms must equal 1/(2x).

Thus another convention that is used defines the Fourier transform of f(z) as

o0
F(w) :/ f(:z:)ei“'zd:c (4)
and the inverse Fourier transform as
1 * —iwT
flz) = % /_oo F(w)e dw. (5)

To complicate matters still further, in some conventions the factor €® in the integral defining
F(w) is replaced by e " and to compensate the factor e~*** in the integral defining f(z) is
replaced by e'*.
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If a Fourier transform is defined in terms of an angular frequency, the ambiguity concerning
the choice of normalization factors disappears because the Fourier transform of f(z) becomes

oo
F) = [ f)meds (6)
— 00
and the inverse Fourier transform becomes

flx) = / h F(w)e 72y, (7)

—0o0

Nevertheless, the difference between definitions still continues because sometimes the expo-
nential factor in F(s) is replaced by e~2™*% in which case the corresponding factor in the
inverse Fourier transform becomes e?****. These remarks should suffice to convince a reader
of the necessity to check the convention used before combining a Fourier transform pair from
another source with results from this handbook.

Some Remarks Concerning Elementary Ways of Finding Inverse
Laplace Transforms

The Laplace transform F(s) of a suitably integrable function f(z) is defined by the improper
integral

F(s) = /Ooof(a:)e_“dx. (8)

Let a Laplace transform F(s) be the quotient F(s) = P(s)/Q(s) of two polynomials P(s) and
Q(s). Finding the inverse transform £~ '{F(s)} = f(z) can be accomplished by simplifying
F(s) using partial fractions, and then using the Laplace transform pairs in Table 19.1 together
with the operational properties of the transform given in 19.1.2.1. Notice that the degree of
P(s) must be less than the degree of Q(s) because from the limiting condition in 19.11.2.1(10),
if F(s) is to be a Laplace transform of some function f(x), it is necessary that Sli{l(; F(s) =0.

The same approach is valid if exponential terms of the type e~®* occur in the numerator P(s)
because depending on the form of the partial fraction representation of F'(s), such terms will
simply introduce either a Heaviside step function H(x — a), or a Dirac delta function §(z — a)
into the resulting expression for f(z).

On occasions, if a Laplace transform can be expressed as the product of two simpler Laplace
transforms, the convolution theorem can be used to simplify the task of inverting the Laplace
transform. However, when factoring the transform before using the convolution theorem, care
must be taken to ensure that each factor is in fact a Laplace transform of a function of .
This is easily accomplished by appeal to the limiting condition in 19.11.2.1(10), because if
F(s) is factored as F(s) = Fi(s)Fx(s), the functions F}(s) and F5(s) will only be the Laplace
transforms of some functions fi(z) and fa(z) if Slilglo Fi(s) =0 and sli>nol<: Fy(s) =0.



