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INTRODUCTION

Mathematics has the longest and richest history of any subject in the academic curricu-
lum. It has been practised in every society and culture, with written records reaching
back in some cases as far as four thousand years, so that those who learn mathematics
in schools and universities today are studying a subject whose origins lie in civilizations
and historical periods often very remote from our own. This book will focus on just
a small part of the story, in a sense the most recent chapter of it: the mathematics of
western Europe from the sixteenth to the nineteenth centuries. This is because this book
evolved from a course designed to provide mathematics undergraduates with some his-
torical background to the material that is now taught universally to students in their
final years at school and the first years at college or university: the core subjects of cal-
culus, analysis, and abstract algebra, along with others such as mechanics, probability,
and number theory. All of these evolved into their present form in a relatively limited
area of western Europe from the mid sixteenth century onwards, and it is there that we
find the major writings that relate in a recognizable way to contemporary mathematics.
Hence the relatively narrow focus of this book.

There are many different ways of approaching the history of mathematics. The most
common are by topic or by period, and in this book you will find both. The first six
chapters deal mainly with the seventeenth century, the next six with the eighteenth, and
the final six with the nineteenth, but the divisions are very far from rigid, and several
chapters deliberately overstep these boundaries. Within that broad framework each
chapter focuses on a particular topic and outlines its history, as far as possible through
extracts from primary sources. The aim of this book is not to present a conventional
account or a predigested version of history, but to encourage you, the reader, to develop
critical historical thinking for yourself. It therefore offers mathematics as it was origi-
nally written, and invites you to read it for yourselves, to ask your own questions, and
make your own judgements.

It can be argued, of course, that the selection of sources and the surrounding com-
mentary already lend support to one interpretation rather than another. That is true
but unavoidable, and I very much hope that readers will counter it by feeling free to
discuss and argue about anything and everything that is written in these pages. It may
also be objected that brief extracts from otherwise lengthy books and articles can never
give more than a partial picture. That is also true, but for beginners a complete picture
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would be overwhelming. Selected themes and examples, on the other hand, can serve as
a helpful introduction to what is available, and those who enjoy what is offered in this
book will have no difficulty pursuing particular authors or topics much further if they
wish to do so. More and more source material is becoming available electronically, but
the sheer amount of it can be bewildering and I believe there is still a place for a book
like this that can serve as a guide to some of the key mathematical literature of the past.

Sourcebooks in mathematics over the last eighty years have always tended to re-
flect current trends in the history of mathematics, and this one is no exception. One
of the earliest such books was David Eugene Smith’s A source book in mathematics
(1929), a collection of translations grouped under the general headings of number,
algebra, geometry, probability, and (lumped together) calculus, functions, and quater-
nions. Within each section the extracts appear in random order, so that, for instance,
Chebyshev on the totality of primes (1851) is immediately followed by Napier on the
invention of logarithms (1614). The book therefore presents the reader with a collec-
tion of raw material but obscures any sense of historical development. Later popular
source books, for example Struik’s A source book in mathematics, 1200—1800 (1969)
or Calinger’s Classics of mathematics (1982) are better arranged, and the latter in par-
ticular has useful introductions to each chapter, and extensive suggestions for further
reading, but remains primarily an anthology, a collection of diverse and unrelated texts.
Such books are based on the premise that the selected extracts will somehow speak for
themselves, but unfortunately they do not. The originals were written in particular his-
torical, personal, and mathematical circumstances that influenced both their style and
their content, and without some knowledge of that context the reader is likely at best
to lack understanding and at worst to be misled. Further, and crucially, mathematics
is not a subject carried on by mathematicians working in isolation, in which every few
years or centuries some new discovery emerges for us to wonder at; on the contrary, all
mathematicians rely on the work of their predecessors and all owe an enormous debt to
the past. How mathematics is communicated from one generation or culture to another
is not a side issue, but an integral part of mathematics as a human activity.

By far the most widely used source book in recent years has been Fauvel and Gray’s
The history of mathematics: a reader, which has done much to overcome the shortcom-
ings of the earlier books. The sources have been imaginatively and astutely chosen to
illustrate periods or themes, and there are helpful introductory notes to each chapter
and section. The Reader was not designed to stand alone, however, but to be read along-
side comprehensive study material produced by the Open University, so that to use it
in an effective way the reader must refer to that or other supporting material. Jeremy
Gray, one of the original editors, is currently compiling the material from the Open
University course units into a companion volume to the Reader, so that the two books
together will provide an excellent introduction to the general history of mathematics.

Nevertheless, I believe there is also room for this present book, not as an alterna-
tive to the Reader but to complement it. The Reader reflects (as all source books are
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bound to do) the predilections of its editors, but also it was designed for students who
could not be assumed to have any mathematical background. It addresses that audience
very successfully, but necessarily its emphasis is either on earlier periods of history (up
to the seventeenth century), or on topics where technical detail can be presented in
a way that is not too daunting. The expected readership of the present book is quite
different: students, teachers, or others, who do have some mathematical training, and
would like to learn more about what lies behind the mathematics they know. This
book therefore offers extracts in which the mathematics stands exactly as it was orig-
inally written, in the hope that readers will engage with it for themselves. Just as new
mathematics can hardly ever be learned without taking pencil and paper in hand, so
there is no better way of entering into the mind of a mathematician than by trying
to think as he did (I am afraid there is no ‘she’ in this book). Some of the mathemat-
ics is easy, some is more difficult, but that is the nature of the subject, and it would
present an unrealistically anodyne picture if the hard bits were all edited out. It is not
necessary to follow every single step of every argument, but it is already a useful histor-
ical exercise to observe just where the difficulties arise, and whether or how they were
overcome.

The feature of this book that otherwise distinguishes it most sharply from its prede-
cessors is that almost every source is given in its original form, not just in the language
in which it was first written, but as far as practicable in the layout and typeface in
which it was read by contemporaries. Every researcher knows the thrill of handling old
books and journals, and while it is impossible in any modern book to convey a sense
of dustiness, or crinkled pages, or battered bindings, or the unmistakable smell of an
old library, I hope the extracts will offer some sense of what it is like to see and handle
the originals. Modern typeface is clean, clear, and regular, but this was not so in the
seventeenth or eighteenth centuries when everything had to be painstakingly set by
hand by printers who probably understood little or nothing of the mathematics they
were dealing with. Paper was of variable quality, ink was spread unevenly, so that some-
times it bled through the page but at other times failed to make a mark at all, and page
edges were often rough and irregular; beyond that, time and age have added further
blemishes, some of which are visible in these extracts. The printed page of two or three
hundred years ago had a much more homespun look than a modern page, sometimes
rough and awkward, but at other times quite beautiful, and difficult to copy or surpass
even with all the possibilities of modern technology. The reasons for reproducing the
pages in their original form, however, are more than aesthetic. It is only by studying
the originals that one sees exactly how notation was invented and used, how equations
were laid out, where and how the diagrams were set, and so on. Later editors and trans-
lators take liberties with all these things, perhaps producing clearer text, but at the same
time distancing us from the original. In this book, sources originally written in English
have not been transcribed except where the original presents problems of legibility, and
diagrams throughout have been left in their original form and context.
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Unfortunately for many of the readers to whom this book is addressed, most of the
sources are not in English, which became an international language of intellectual dis-
course only in the twentieth century. In the earlier chapters, the predominant language
is Latin, later giving way to French and then to German. Because it is too much to expect
modern readers to know all or even one of these, translations are provided for all the
extracts, but it is my hope that anyone with even a rudimentary knowledge of the other
languages will try their hand at the originals, with or without the offered translation
alongside. Translation is at the best of times a subtle and difficult task for which there
is no single correct outcome, and just as in the choice and arrangement of sources, new
ways of thinking about the history of mathematics are reflected in changing attitudes
to translation. Many older translations reveal the content of a text and can be a useful
starting point, but the translators were sometimes very free in their interpretations of
the original, and unfortunately have all too often been copied without question in later
volumes: Calinger, for instance, and even Fauvel and Gray, draw quite heavily on trans-
lations to be found in Smith or Struik. The translations in the present book, apart from
two exceptions noted in the Acknowledgements below, have been made entirely afresh,
with the following precepts in mind: (i) that vocabulary and sentence structure should
remain as true as possible to the original; (ii) that mathematical notation should not be
changed unless it cannot be reproduced, or is actually misleading; in this last case any
changes have been clearly noted. These rules may sound straightforward but in practice
they are not.

Retaining the thought forms of another language is never easy, especially (in this
book) translating from Latin or German where word order is markedly different from
English. Even from French, which is much closer to English in its modes of expression,
the problems are subtle. Lacroix, for instance, in his account of the development of
the calculus in the introduction to his Traité du calcul wrote (of Newton): ‘il appela
fluxions les vitesses qui régulaient ces mouvemens’! Translating literally we have: ‘he
called fluxions the speeds which regulate these movements), but since the sentence is
offering a definition of fluxions it is much more natural to say in English: ‘he called
the speeds which regulate these movements fluxions’. In other words, English witholds
the emphasis on the new concept to the end of the sentence, where French has it up
front. Do such fine distinctions matter? They do, because by changing word order it
is all too easy to alter the balance of a sentence, and therefore of a thought, in ways
that the author did not intend. Strictly literal translations, on the other hand, can be
awkward to the point of being unreadable and, as in the example above from Lacroix,
can even get the meaning wrong. In the end, every translator has to take a little licence
with the original for the sake of fluency. Seventeenth- and eighteenth-century Latin,
for example, is often riddled with ‘moreovers’ and ‘therefores’, and I confess to having
silently eliminated quite a few of them. Nevertheless I have kept these and other stylistic

1. Lacroix 1810, xv.
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changes to a minimum and have tried to avoid the temptation to modernize or ‘improve’
other people’s writing. Not the least of my reasons for doing so is to enable the reader
to compare originals and translations as directly as possible.

The problems outlined above are common to all translation, but the translation
of historical mathematical texts poses yet further levels of difficulty, in the handling
of technical words and mathematical notation. Most readers of this book will almost
certainly want to re-write some of its mathematics in modern symbolism to understand
it more easily; this is a natural and reassuring thing to do, and indeed we have all
learned mathematics by precisely this technique of writing it ‘in our own words’ A
modern translation should not be confused, however, with what the author himself had
in mind. When, for instance, we change Cardano’s equation

1 cubum p : 8 rebus, aequalem 64

into
x> 4+ 8x = 64

we are translating an obscure form of words into something we can immediately rec-
ognize. But it also takes us a long way from the original, turning Cardano’s ‘rebus’, or
‘things’, which had its own history and meaning, into our ‘x’, which has its own quite
different history and meaning. To understand Cardano’s thought we need to return
to his text armed with modern formulas only as a guide. The symbolic version can
certainly give us some hints and clues as to the richness of the original, but should never
be mistaken for it.

Similar problems arise with words and phrases that were once in common currency
but which have now lost their meaning. Sixteenth- and seventeenth-century mathe-
maticians, for instance, frequently used the Latin word ‘in’ in phrases like ‘A in B’
Literally, this refers to the construction of a line segment A on (‘in’), and perpendicular
to, a line segment B; together the lines define or ‘produce’ a rectangular space. The
phrase is usually most easily translated as ‘A multiplied by B’ or ‘A times B’, but the
words ‘multiplied by’ or ‘times’ strictly apply to numbers, not lengths, and in themselves
carry no geometric overtones. Similarly, the geometric ‘applicare ad’ (to lay against) is
generally translated as ‘to divide by’, but again the geometric connotation is lost. Does it
matter? Yes, because we cannot really understand meaning if we ignore historical roots,
and yet it is almost impossible to preserve or convey those roots in the very different
language of today.

In other cases there are words that have remained outwardly the same while their
meaning has changed many times over: ‘algebraic’ and ‘analytic’, for instance, which
can only ever be understood in relation to a particular time and context. There are
also words or phrases that simply have no exact counterparts in English. Euler, for
example, used the expression functio integra (literally a whole or complete function) for
a function that can be expressed as a finite sum of positive powers. The same phrase

XIX
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appears in French as fonction entiére or in German as ganze Function, but there is no
English equivalent. Cayley tried ‘integral function’ but that simply confuses matters
with the calculus. A technically correct translation is ‘polynomial function) but that
is unsatisfactory because ‘polynomial’ means literally ‘having many terms, something
almost the opposite of the sense Euler was trying to convey of being complete, finished,
rounded off.

Finally, in translating mathematics it is often all too tempting to introduce words
that now have a precise technical meaning, as though that was what an author in the
past would have used if he could. Thus, for example, a recent translation of Cantor’s
proof of the countability of algebraic numbers, uses the terms ‘set’ and ‘one-to-one’,
both of them thoroughly familiar to modern mathematicians, but nowhere to be seen
in Cantor in 1874; on the contrary, Cantor had to explain his new meaning as best he
could without the help of such words and in everyday vocabulary.? To read the present
into the language of the past is to imagine that modern mathematics was somehow
always in existence, just waiting for someone to notice it. This attitude is not only
ahistorical but it belittles the struggles and insights of those who had to grapple for
the first time with strange and difficult ideas, and express them in whatever words they
could muster.

The process of change in style and language continues even now, and with increasing
rapidity. Those who were educated in the 1960s or 1970s will still be intimately familiar
with some of the terms and concepts to be found in the extracts in this book, in a way
that those educated even twenty or thirty years later will not. As a reader of this book
you need to be constantly aware of the problems of language and translation, and if you
have any knowledge at all of the source languages, look at the originals and decide for
yourself how to interpret them. Discuss the problems with others, and make whatever
changes or improvements you see fit to the translations offered.

The same direction to discuss and improve applies to every other feature of this book.
Everyone who reads it with any seriousness is likely sooner or later to complain that this
or that source should have been included but is not: in that case, follow it up and make
the missing source the starting point of an alternative or more complete story. Around
every extract in the book there is some commentary to explain how it fits into a broader
picture, or to elucidate those parts where the mathematics may seem to modern eyes
(and perhaps to contemporary eyes also) particularly difficult or obscure, but these
relatively brief remarks should by no means be taken as all there is to say. Compare
them with interpretations made by other historians; weigh up the points of agreement
or disagreement; make your own judgements based on the source material available to
you here and elsewhere; become not just a reader but a historian.

Part of this process will be to understand that mathematics does not separate itself
into sections as neatly as might appear from the eighteen chapter divisions of this

2. Ewald 1996, II, 840.
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book. There are already many cross-references from one chapter to another, as there
are bound to be in a subject where apparently unrelated topics have a way of turn-
ing out to belong to the same larger picture. I hope you will find other connections,
both within this book and to material outside it. I also hope that you will look for
relationships and influences not just between one piece of mathematics and another,
but between mathematicians themselves. Mathematics, perhaps more than any other
academic subject, develops out of insights and understanding accumulated over time
and passed from person to person, sometimes through books and printed papers, but
also through letters, lectures, and conversations. The significance of personal meetings
and friendships between mathematicians is often overlooked, but they are very much
part of the intricate social history of mathematics.® The brief biographical notes at the
end of the book are intended to help illustrate this.

Mathematics is a thoroughly human endeavour in yet another sense, and this time
with the emphasis on endeavour. Mathematics, for obvious reasons, is generally taught
as a set of tried and tested theorems, carefully built up in a sensible and convincing
way from accepted starting points, but it will not take you long as you peruse the
extracts in this book to see that mathematics was not discovered or invented that
way at all. Here you will find mathematicians groping in the dark, experimenting
with new ideas, making hypotheses and guesses, proving correct theorems wrongly,
and even on occasion proving incorrect theorems wrongly too. Mathematics is for
everyone, beginner or expert, a process of discovery that is prone to error, false starts,
and dead ends. Some past mistakes have been included in this book quite deliberately to
demonstrate that not even for an Euler, a Lagrange, or a Cauchy was it all plain sailing.

My hope is that through the pages of this book you will see the emergence of mathe-
matics that is universally taught today, as it took shape in the minds of those who created
it. Often, especially in the earlier years of the seventeenth century, it was developed in
contexts that now appear strange and perhaps unwelcoming, and expressed in language
that can seem difficult and obscure. Yet gradually it becomes more recognizable and
familiar, until by the early nineteenth century we are in touch with those who directly
formed much of our present day curriculum. If this book helps you to a better under-
standing of some of the mathematics you know, it will have served one good purpose; if
it leads to you to read historical texts with perception and judgement it will have served
another, no less valuable.

3. For a remarkable example of a mathematician working alone see Simon Singh’s account of Andrew Wiles in
Fermat’s last theorem (2002); for an equally remarkable example of mathematicians working in collaboration see Mark
Ronan’s Symmetry and the Monster (2006).
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