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PREFACE

The 1989 Theoretical Advanced Study Institute in Elementary Particle
Physics (TASI-1989} was held in Boulder, Colorado, Juae 5 to 30. This year’s,
program, “From Actions to Answers”, focussed on computation in theoretical
particle physics. Accordingly, the school had large components on collider
phenomenology and lattice gauge theory. We also had a number of lectures
on current topics in modern mathematical physics {conformal field theory,
quantuin gravity; and sphalerons). Finally we had an extensive program of
seminars on recent experimental results. A grand total of 38 students ard 23
lecturers attended the Institute.

The physical high point of the Institute was the summit of Mt. Audobon
(13,233 feet above sea level). We can’t name a specific intellectual high point.
We enjoyed the experience of being able to ask smart people dumb questions
during the lectures and the conversations during the coffee breaks while we d
from the thunderstorms.

Organizing a summer school is a nontrivial task and we would like to rec-
ognize the peopie and institutions who helped make it possibie. We received
funding from the U.S. Department of Energy and the National Science Foun-
dation. The lecturers worked very hard to prepare lectures for the summer
school, only to discover that they had to work even harder to write them up
for this proceedings. The administrative director of the Institute {and the
only one of us who really knew what was going on) was K. T. Mahanthappa.
Colorado graduate students Matthew Hecht, Vasilios Koures, and He-Sheng L1
were a big help throughout the School. Finally we’d like to thank our tireless
secretary Linda Frueh for all her efforts on our behalf.
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FIVE WAYS TO BE DISCRETE:
A Nonspecialist’s introduction

to Lattice Field Theory
David J. E. Callaway

Departinent of Physics
The Rockefeiler University
1230 York Avenue
New York, New York 10021-6399

ABSTRACT
These lectures provide an introduction to lattice field theory. T review
the relevant facts about continuuin field theory necessary to under-
stand the lattice formalisin, then describe gauge theories on the lat-
tice. Fnext diseuss triviality and lattice Higgs models, and conclude
with a deseription of lattice theories in the microcanonical ensemble.



Lecture #1: Introduction and review of continuum field theory
1.1 Prolegomena

A wide range of experimental phenomena can presently be
understood on the basis of field theory. Without resort to
numerical techniques, however, detailed predictions are often
difficult . to make. A convenient approach to the problem of
nonperturbative analysis of field theory involves its
reformulation on a spacetime lattice. A wide variety of numerical
and analytical techniques can then be applied to the lattice
theory. A prime example of the efficacy of this reformulation is
the case of lattice Higgs models, where the possibility of
bounding or directly predicting the Higgs mass can be
consideredl. Nonperturbative calculations involving QCD, the
generally accepted model of the strong interaction, are also of
great importance.

These lectures are organized as follows. In the first
lecture, a brief review of continuum field theory is given, with
particular emphasis on the path integral formalism. The second
lecture introduces the concept of a lattice gauge theory. Scalar
and fermionic matter fields are discussed in the third and fourth
lectures respectively. The fifth lecture covers microcanonical
field theory, which leads to techniques of some utility in the

numerical simulation of iattice field theories.
1.2 Continuum gauge theories

1.2.1. From a symmetry principle to a Langrangian

Before discussing lattice gauge theories, it is instructive to
review briefly tha concepts of continuum gauge theories. More
detailed reviews can be found in Abers and Lee3, Taylur4.



Kibbled, and elsewhere. The following discussion assumes a fair
degree of familiarity with classical mechanics: the reader may first
wish to refresh his memory on the subject with one of the standard
texts such as Goldstein.

A fundamental ingredient of any quantum fieid theory (in the
continuum or on a lattice) is the action, which 1s given by the time
integral of the Lagrangian I.

S=[. I dt= | d%x L{6,00] (1.1)

The Lagrangian is in turn given by the space integral of the Lagrange
density L, which is a functional of the fields {¢] and their
derivatives {8¢}. The classical equations of motion of this theory
are derived by means of Hamilton's principle, which states that the
functional variation of the action is a minimum along the classical

'path' or trajectory for a particle or field

t2 -

Sltl [dt =0 (1.2)
£q. (2.2) implies that the Lagrange density must obey Euler's
equations
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A simpie example is the Lagrange density of a non-interacting

scalar field
= LrgH gt (V% (1.4)
L {080} = 5 [(8¥ 0)(3,0) - m" ¢ ¢] (1.4)

where m is the mass of the particles of the thecry. The field ¢ is
complex; as will be seen in a moment, this allows the particies of
the theory to carry electric charge. The Euler equation of motion
for the field ¢ is

2 2, 2)

(aua“+ m)e = (3% me = 0 (1.5)

and the corresponding Euler equation for the complex conjugate



field ¢* is simply the complex conjugate of Eq. (2.5). In this case
the two equations are identical.

Eq. (1.5) is the Klein-Gordon equation, which describes quantum
wave mechanics associated with spinless particles of mass m (see,
e.g. Bjorken and Dre]17). For those unfamiliar with the Klein-Gordon
equation, it may seem less mysterious when written in component form:

~N

(_'?___7
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which, for m=0, is just the standard wave equation. Then if the

2 nl)e =0 (1.6)

usual quantum mechanical identification
)
1at*E

..'iv-vp

(1.7)

is made, the Klein-Gordon equation arises from the relativistic
kinematic requirement

2 = p° = m° (1.8)

As stated above, the fact that the ¢ is complex allows it to
couple to an electromagnetic field. What is remarkable is that the
form of the field equations and Lagrangian for scalar electrodynamics
can be obtained by 'extending' a symmetry of the Lagrange density L
(1.4Y. In order to understand the mechanism by which the Lagrangian
for electromagnetism is generated, it is necessary to appreciate more
fuily the implications of symmetries of the classical Lagrangian.

Tc every continuous symmetry of the Lagrangian there corresponds
a conservation law. Conversely, for every conserved quantum number
there exists a transformation on the fieids of the theory which
teaves the lagrangian invariant. These statements are a standard
result of classical mechanics known as Noether's theorem. A simple
example of this general phenomenon is related to the idea of electric

charge. Consider a qroup of transformations on the fields ¢,

X X
d{x)yexp(-ige)e(x) ¢ (x)-exp(+ig8)d (x) (1.9)

where g is io be asscciated with the real charge of the ¢ field and 8



parameterizes the transformation. The Langrange density equation
(1.5) is invariant under this set of transformations, which form the
group of unitary transformations in one dimension and are classified
in the standard fashion as the group U(1l). Note that even though the
tagrange density contains terms involving gradients of the ¢ fields,
these terms are invariant under the transformation Eqs. (1.9) since @
is independent of x. Eq. (1.9) describes a global gauge
transformation.

For infinitesimal 8(=86), the giobal transformation Eqs. (1.9}
reads

§6=-1(58)q0, 60 =+i(58)qd (1.10)

The condition that the Lagrange density be invariant under this
transformation can be written

§L X

x
& bt 80 + 7o ayr

6L

=0= T F AL e = BB [1.1%)
8L=0 50 ¢+ 6(ap¢)5\au¢)+ 50 s(au¢*) (o“¢ ) (1-1%)
From Eqs. (1.3) and (1.11) it can be seen that the current
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is conserved, that is:
3 ¥ =0
¥
‘;‘; + 9 .0 (1.12b)

In the simple example £qg. {1.4) the conserved current is

,"! 1 * *

i ~ P 12
JF = 5 (¢3¢ - & 9 9)q (1:13)
4 1 u
The connection with electric charge can be made with the cond
quantized version of the theory (see, e.g., Abers and Lee”} whey e

operator Q
Q = dex Ju = Id3x p{x) (1.14)



gives the total charge of the current.

A few simple algebraic tricks have led to a remarkable
phencmenon! Simply from the observation that the Lagrange density
possesses a certain continuous symmetry [in this case the U(1) *
symmetry of a redefinition of the phase convention the ¢ field,

Eq. (1.9)] it is possible to deduce a conservation law for the
theory. Note especially that no property of the Lagrangian other
than this symmetry is needed to discover the conserved current of
Eq. (1.12a).

The existence of a conserved current is not the only novelty,
however. By a systematic extension of this symmetry of the
Lagrangian, it is possible to create (almost from nothing!) a set of
fundamcntal laws which appear to describe our universe. Of course
such an approach has great aesthetic appeal. The method by which
this extension is made is now reviewed.

Consider the physical meaning of the symmetry described by
Eq. (1.9). This symmetry arises because the phase of the field ¢ is
not an observable quantity, and therefore an overall constant (in
this case 8) can be added to its intrinsic phase without affecting
the predictions made by the theory. In other words, the overall
phase of the wave function is simply a matter of convention. It
seems peculiar however that the phase convention chosen at one point
should constrain the choice of convention at all the points of
spacetime. Such a concept does not appear to be consistent with the
localtized field description that underiies the usual physical
theories. Instead, it might be expected that the choice of phase
convention could be made independentiy at all points of spacetime.
(This view is usually attributed to Yang and MillsS.)

The Lagrangian Eq. (1.4) is not invariant under this more
general transformation however. The property is easy to
demonstrate. If a transformation of the form of Eq. (1.9) but with
6{x) taken to be a function of x appliied to the field ¢(x) it

transforms as



o(x)~¢(x)exp[-iq8(x)] (1.15)
Terms in the Lagrange density which do not depend on the derivatives
of the fields ¢ are invariant under the more general (local) ga:ge
transformations, e.g.,

2 & 2 oF '

mé ¢ (x)o(x) » me ¢ (x)d(x) (1.16)

However, terms involving the gradients 9o of the ¢ fields are not

invariant since under the transformation given by Eq. (1.15):
8u¢*[8u¢(X)-iqau9(X)-®(X)]exp[-iq9(X)] (1.17)

The Lagrange density can however be made invariant under a loca!
gauge transformation by the introduction or a new field (which can be
identified with the electromagnetic field) in a fashicn which is
usually referred to as minimal coupling. This procedure is
equivalent to the replacement of the gradient operator in the
Lagrange density the the so-called 'covariant derivative' operator

D =3 -iegA 1.18
0 y~iea u(X) ( )

I1f, under the local gauge transformation of Eq. (1.15}, the field
Au(x) transforms in the fashion

-1
Au(x)4~e aue(x)+Ap(x) (1.192)

then the covariant derivative operating on the field ¢ transforms as
follows: ’
Du¢(x)*exp[-iqB(X)]Du¢(X) (1.19b)

Therefore the modified kinetic term
*x u 2:
By g™ %(Du¢) (D 0)-ZW o 0 (1.20)
i1s invariant under the local gauge transformation given by Eq. (1.19)
and is an acceptable candidate for part of a locally gauge-invariant
Lagrange density.

There should, of course, by kinetic terms in the Lagrange
density which couple Au only to itself. These terms constitute the
part of the action involving only the pure gauge field. One quantity
involving only the Al_| is the second-rank tensor
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FHV= gMav- 3V (1.21)
which is invariant under the gauge transformation in Eq. (1.19).
Thus the expression for the Lagrange density of scalar
electrodynamics, Lsg, is

Lse = Liin *Lem (1.22a)
- Hv

Lew = -4F,F
-y (E2- 8% (1.22b)

is also gauge invariant and can be proposed as a Lagrange density for
a field theory. (The factor -% is included by convention). The
Lagrange density of Eq. (1.22b) is recognizable as that of pure
electromagnetism, while that of Eq. (1.22b) is the standard form

of the Lagrange density of scalar électrodynamics (see, e.g., Bjorken
and Drell7. In addition, the transformaticn law given by Egs. {1.19)
is just the cancnical ‘gauge transformation' of electrodynamics. The
resuits of the above analysis are thus not new. What is new is the
derivation of the Lagrange density for scalar electrodynamics from a
‘simple principle - the extension of a giobal symmetry of a Lagrange
density to a local one.

This concept can be applied to many types of symmetry. For
example, 1f Lhe familiar Lorentz symnetry of special relativity is
extended to a local symmetry, the result is essentially the Einstein
theory of general relativity (see KibbleS}o In part cle physics, the
relevant symaetries to be considered involve Lie groups. ASs shown
above, the theory of electromagnetism 1s found by extending a U(1)
symmetry. The current theories of what are called weak and strong
interactions are 1n turn partially based upon the Lie groups SU(Z2)
and SU(3). These theories are discussed in more detail later on;
first it is necessary to take a mathematical detour to see how to
extend the above analysis to groups other than U(1).

The gauge transformation for a general internal symmetry Lie

group can be written as



