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Preface

In the last 30 years, Approximation Theory has undergone wonderful develop-
ment, with many new theories appearing in this short interval. This book has
its origin in the wish to adequately describe this development, in particular, to
rewrite the short 1966 book of G. G. Lorentz, “Approximation of Functions.”
Soon after 1980, R. A. DeVore and Lorentz joined forces for this purpose. The
outcome has been their “Constructive Approximation” (1993), volume 303 of
this series. References to this book are given as, for example [CA, p. 201].

Later, M. v. Golitschek and Y.Makovoz joined Lorentz to produce the
present book, as a continuation of the first.

Completeness has not been our goal. In some of the theories, our exposition
offers a selection of important, representative theorems, some other cases are
treated more systematically. As in the first book, we treat only approximation
of functions of one real variable. Thus, functions of several variables, complex
approximation or interpolation are not treated, although complex variable
methods appear often.

Most of the chapters of the present book can be read independently of
each other. They fall into groups: Chapters 1-6 deal with polynomial and
spline approximation — in some sense they continue the themes of [CA]. Chap-
ters 7-10 contain a fairly complete theory of rational approximation. Chapters
12-14 treat widths and entropy of classes of functions. But even within the
groups, chapters are more or less independent, except that it is advisable to
read Chapter 3 before Chapter 4, while Chapter 7 is indispensable for Chap-
ters 8 and 10, and Chapter 13 for Chapter 14. Most of the information about
Banach function spaces needed in the two volumes of CA can be found in
[CA, Chapter 2|, in §7 of Chapter 1 of the present volume, and in the book
of Bennett and Sharpley [B-1988]. We also provide a quick new look at some
of the important approximation theorems: for polynomials in §7 of Chapter 1,
for splines in §1 of Chapter 6.

Related branches ol Analysis: Fourier Series, Orthogonal Polynomials,
Potential Theory, Functional Analysis, even Number Theory are our allies.
We use their methods; some of the needed results are collected for the reader
in the four Appendices.

For the development of the Approximation Theory, one cannot be suf-
ficiently thankful to the Russian (Soviet) mathematicians: to Chebyshev,
A. A. Markov, Bernstein, Kolmogorov and others, who built its foundations.



VI Preface

At present Approximation Theory is popular worldwide, with the new theories
of splines, of rational approximation, of wavelets.

We are very grateful to A.A.Pekarskii (Grodno, Belarus), who has pre-
pared for us Chapter 10, which deals with complex methods in rational ap-
proximation. Our colleagues, Berens, R. A. Lorentz, Stahl, Erdélyi, Lubinsky,
Totik have helped us with concrete problems. We are also indebted to Blatt,
Buslaev, Chui, Jetter, Maiorov, Shechtman, Varga and others for useful ad-
vice. Margaret Combs at the Department of Mathematics, The University of
Texas, has very ably typed many chapters of the book.

The book has an extensive bibliography, which can also serve as Author’s
Index. Each quoted journal article is followed by the number of page, where
it is referred to in the text. There is also a Subject Index.

The authors would be grateful for any comments or proposals of correc-
tions from the readers.

The Authors
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Chapter 1. Problems of
Polynomial Approximation

This chapter contains a discussion of some important problems of approxi-
mation, mainly by algebraic polynomials. We begin with properties of poly-
nomials of best approximation: some examples in §1, distribution of their
alternation points on the interval in §2, distribution of their zeros in the com-
plex plane in §3. In §4, as an exception, we discuss approximation by entire
functions, and the error of approximation in Banach spaces. In §§5-6, we give
a solution of a problem of Bernstein, about the weighted polynomial approx-
imation on (—o00,c0). Spaces for approximation problems are found in §7.

§ 1. Examples of Polynomials of Best Approximation

Polynomials of best uniform approximation on the circle T or an interval [a, b]
are described by the theorems of Chebyshev (see, for example, [CA, Theorem
A, p.58, or Theorem 5.1, p.74]). Only in exceptional cases can they be given
explicitly. Here are some examples.

Let ny,ny,... be odd integers > 3, we write Ny = nyna - - ny.

Theorem 1.1. Let f be a continuous function on T, with the Fourier series
of one of the forms

(o<} [o o)
(1.1) ap + Zakcostt , Zb“ sin Nyt .

k=1 k=1
Then the trigonometric polynomials of best approrimation to f are precisely
the partial sums of (1.1). (In particular, the series converge uniformly.)

Proof. Consider for example, the first series (1.1). The statement of the
theorem asserts that the partial sum Si_y(t) = Zté ajcos Njt is the
best approximation to f, among all polynomials of degree < n, for each
n = Nk-1,..., Nk — 1. The difference Ry = f — Si-; has the following prop-
erties. Its Fourier series is E;’ik ajcos N;t, and by Fejér’s theorem, Ri lies
in the closed span of these cosines. Hence Ry has period 27/Nj. In addition,
since all N; are odd, Ry is odd about the center c: = ¢, of each of the intervals

s 2l o 2m(e+1)

P
t=lan. TN, N N; ’

£=0,...,Nx -1,



2 Chapter 1. Problems of Polynomial Approximation

that is, it satisfies Rx(c—t) = —Ri(c+t). It follows that the absolute maximum
M of Ri on T and its absolute minimum —M are taken on each I, at points
symmetric about c,. We get enough alternation points to apply Chebyshev’s
theorem. Similarly for the second series (1.1). O

If the coefficients aj in the first series (1.1) are of the same sign, we can
obtain an explicit formula for the error of approximation E,(f). We explain
this for the algebraic case. Let ax > 0, 3" ar < 400 and let f on [-1,1] be
given by

1.2) f=)_aiCn, ,
i=1

where C,, are the Chebyshev polynomials [CA, §6, Chapter 3]. By the stan-
dard substitution z = cost and Theorem 1.1, S,(z) = Z;;la,-CN,. (z),
Ni < n < N4 is the polynomial of best approximation to f from P, and

(13) Ea(f)=f(1)-Sa(Q)= > a;, Ne<n<Nepa,k=12,....

j=k+1

Here is another concrete example, known already to Chebyshev.

Theorem 1.2. Let f(z) = (z —a)~!, z € [~1,1], where a > 1. Then for
c:=a—-+va?-1<1,

4cn+2
(1.4) E.(z-a)7)

Ta-ap

Proof. The formula z = %(w +w™!) defines a one to one map of the complex
z-plane split by [—1,1] onto the disk |w| < 1. To each z € [—1,1] correspond
two values of w on |w| = 1, related by w; = w; . (See [CA, §2, Chapter 4].)
Let 0 < ¢ < 1 be given by a = %(c +c¢71), that is, by ¢ = a — vaZ — 1. Then

_M nC—w —pl—cw
(1.5) 8(a) = (w S hw C_w)

defines a function on C. We note that w* + w=* k = 0,1, ... is a polynomial
in z of degree k and that

a+e)1-2)= (2 w0,

Therefore
(1.6)
— -1 _
¢(z) - _ {wn—lwl—c +w1—nw C}
w-l-¢c w-—c

SIS

n— -ny, - N1 —
{w*(w —c)? + w' (w.l—c)2}(1—z) 1L+,
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We see that &(z) has the form

9(z) = —2 - Pa(a)

where P, is a polynomial of degree n with real coefficients. Since

. M. (w-¢w-1) _,1-cw M(1-c??
A=:l:1_r.r}1(m—-a)45(x)=—2—‘}l1_n.1c( Z)c(:w )w"c—w = Etc"“)

3

we select M = 4¢"*%(1 — ¢?)~2, and have then
8(z) = —— - Pala)
Tzx—-a "V

As w moves on the upper semicircle [w| = 1 counterclockwise, £ moves on
(-1,1] from 1 to —1. By (1.5), &(z) = % (¥(w) + ¥(w)~"), where ¥(w) =
w™(c — w)(1 — cw)~?. Since [¥(w)| = 1 on |w| = 1, we have |¥(z)| < M,
|w| = 1. The function ¥ has n + 1 zeros inside |w| = 1, and because of
symmetry, arg ¥ (w) changes from 7 to (n + 2)7 on the upper semi-circle. If
arg¥(w) = km, k=1,...,n+2, then #(z) = M or H(z) = —M for even or for
odd k, respectively. By Chebyshev’s theorem on [-1,1], P, is the polynomial
of best approximation for (z —a)~!, and the error of approximation is M. O

Let P,, Pp41 be two polynomials of best approximation to f € C[-1,1],
and let P, # Pn4+1. Then:

(1.7) Q:= P,—P,4; has n+1 distinct zeros in the open interval (-1,1).

Indeed, let -1 < z) < -+ < 42 < 1 be n + 2 alternation points for P,
(from [CA, Theorem 5.1, p.74]). If for instance f(z;) — Pn(z;) > 0, then

(18)  f(z;) = Pa(z;) = |If = Pull > |f = Pasall 2 f(=;) = Pasa(z;) ,

so that Q(z;) < 0. Similarly Q(z;41) > 0. Thus, Q changes sign on each of
the intervals [z, z;41].

Can it happen that all polynomials of best approximation to f € C[—1,1]\
P have a common zero of high multiplicity p? This is impossible even for p = 2
— it would contradict (1.7). However, this phenomenon can occur infinitely
often.

There is a sequence p, — o0, a function f € C(T) and a point ¢ with the
property that for infinitely many n, the best approrimation T, to f has a zero
of multiplicity p, at c. According to Zeller, this may be established as follows.
Using the notation of Theorem 1.1, we put

(1.9) f(t) = iak cos? Nyt Z]a;l < 00

k=1

where g are odd positive integers which tend to infinity. The partial sum
Sk(t): = Ef___l a; cos? N;t is a polynomial of degree Nigx. If



