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Preface

Background

Mathematical models for spatial-temporal physical, chemical, and biological systems
under random influences are often in the form of stochastic partial differential equa-
tions (SPDEs). Stochastic partial differential equations contain randomness such
as fluctuating forces, uncertain parameters, random sources, and random boundary
conditions. The importance of incorporating stochastic effects in the modeling of
complex systems has been recognized. For example, there has been increasing interest
in mathematical modeling of complex phenomena in the climate system, biophysics,
condensed matter physics, materials sciences, information systems, mechanical and
electrical engineering, and finance via SPDESs. The inclusion of stochastic effects
in mathematical models has led to interesting new mathematical problems at the
interface of dynamical systems, partial differential equations, and probability theory.
Problems arising in the context of stochastic dynamical modeling have inspired
challenging research topics about the interactions among uncertainty, nonlinearity,
and multiple scales. They also motivate efficient numerical methods for simulating
random phenomena.

Deterministic partial differential equations originated 200 years ago as mathemat-
ical models for various phenomena in engineering and science. Now stochastic partial
differential equations have started to appear more frequently to describe complex
phenomena under uncertainty. Systematic research on stochastic partial differential
equations started in earnest in the 1990s, resulting in several books about well-
posedness, stability and deviation, and invariant measure and ergodicity, including
books by Rozovskii (1990), Da Prato and Zabczyk (1992, 1996), Prevot and Rockner
(2007), and Chow (2007).

Topics and Motivation

However, complex systems not only are subject to uncertainty, but they also very
often operate on multiple temporal or spatial scales. In this book, we focus on sto-
chastic partial differential equations with slow and fast time scales or large and small
spatial scales. We develop basic techniques, such as averaging, slow manifolds, and
homogenization, to extract effective dynamics from these stochastic partial differen-
tial equations.

The motivation for extracting effective dynamics is twofold. On one hand, effec-
tive dynamics is often just what we desire. For example, the air temperature is a
macroscopic consequence of the motion of a large number of air molecules. In order
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to decide what to wear in the morning, we do not need to know the velocity of these
molecules, only their effective or collective effect, i.e., the temperature measured by
a thermometer. On the other hand, multiscale dynamical systems are sometimes too
complicated to analyze or too expensive to simulate all involved scales. To make
progress in understanding these dynamical systems, it is desirable to concentrate on
macroscopic scales and examine their effective evolution.

Audience

This book is intended as a reference for applied mathematicians and scientists (gradu-
ate students and professionals) who would like to understand effective dynamical
behaviors of stochastic partial differential equations with multiple scales. It may also
be used as a supplement in a course on stochastic partial differential equations. Each
chapter has several exercises, with hints or solutions at the end of the book. Realizing
that the readers of this book may have various backgrounds, we try to maintain a bal-
ance between mathematical precision and accessibility.

Prerequisites

The prerequisites for reading this book include basic knowledge of stochastic partial
differential equations, such as the contents of the first three chapters of P. L. Chow’s
Stochastic Partial Differential Equations (2007) or the first three chapters of G. Da
Prato and J. Zabczyk’s Stochastic Equations in Infinite Dimensions (1992). To help
readers quickly get up to this stage, these prerequisites are also reviewed in Chapters
3 and 4 of the present book.
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1 Introduction

Examples of stochastic partial differential equations; outlines of this book

1.1 Motivation

Deterministic partial differential equations arise as mathematical models for systems in
engineering and science. Bernoulli, D’ Alembert, and Euler derived and solved a linear
wave equation for the motion of vibrating strings in the 18th century. In the early 19th
century, Fourier derived a linear heat conduction equation and solved it via a series of
trigonometric functions [192, Ch. 28].

Stochastic partial differential equations (SPDEs) appeared much later. The subject
has started to gain momentum since the 1970s, with early representative works such as
Cabana [58], Bensoussan and Temam [33], Pardoux [248], Faris [ 123], Walsh [295].
and Doering [99,100], among others.

Scientific and engineering systems are often subject to uncertainty or random fluctu-
ations. Randomness may have delicate or even profound impact on the overall evolution
of these systems. For example, external noise could induce phase transitions [ 160, Ch.
6], bifurcation [61], resonance [172, Ch. 1], or pattern formation [142, Ch. 5], [236].
The interactions between uncertainty and nonlinearity also lead to interesting dynam-
ical systems issues. Taking stochastic effects into account is of central importance for
the development of mathematical models of complex phenomena under uncertainty in
engineering and science. SPDEs emerge as mathematical models for randomly influ-
enced systems that contain randomness, such as stochastic forcing, uncertain param-
eters, random sources, and random boundary conditions. For general background on
SPDEs, see [30,63,76,94,127,152,159,218,260,271,306]. There has been some promis-
ing new developments in understanding dynamical behaviors of SPDEs—for example,
viainvariant measures and ergodicity [107,117,132,153,204], amplitude equations [43],
numerical analysis [174], and parameter estimation [83,163,167], among others.

In addition to uncertainty, complex systems often evolve on multiple time and/or
spatial scales [116]. The corresponding SPDE models thus involve multiple scales. In
this book, we focus on stochastic partial differential equations with slow and fast time
scales as well as large and small spatial scales. We develop basic techniques, including
averaging, slow manifold reduction, and homogenization, to extract effective dynamics
as described by reduced or simplified stochastic partial differential equations.

Effective dynamics are often what we desire. Multiscale dynamical systems are
often too complicated to analyze or too expensive to simulate. To make progress in

Effective Dynamics of Stochastic Partial Differential Equations. hitp://dx.doi.org/10.1016/BY78-0-12-800882-9.00001-9
© 2014 Elsevier Inc. All rights reserved.
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Effective Dynamics of Stochastic Partial Differential Equations

understanding these dynamical systems, it is desirable to concentrate on significant
scales, i.e., the macroscopic scales, and examine the effective evolution of these scales.

1.2 Examples of Stochastic Partial Differential Equations

In this section, we present a few examples of stochastic partial differential equations
(SPDESs or stochastic PDEs) arising from applications.

Example 1.1 (Heat conduction in a rod with fluctuating thermal source). The
conduction of heat in a rod, subject to a random thermal source, may be described by
a stochastic heat equation [123]

Uy = Kliyy +n(x, 1), (1.1)

where u(x, t) is the temperature at position x and time ¢, « is the (positive) thermal
diffusivity, and n(x, t) is a noise process.

Example 1.2 (A traffic model). A one-dimensional traffic flow may be described
by a macroscopic quantity, i.e., the density. Let R(x, t) be the deviation of the density
from an equilibrium state at position x and time ¢. Then it approximately satisfies a
diffusion equation with fluctuations [308]

Ri =K Ry —cRy +n(x,t), (1.2)

where K, ¢ are positive constants depending on the equilibrium state, and n(x, 1) is a
noise process caused by environmental fluctuations.

Example 1.3 (Concentration of particlesin a fluid). The concentration of particles
in a fluid, C(x, 1), at position x and time # approximately satisfies a diffusion equation
with fluctuations [322, Sec. 1.4]

C; = D AC + n(x., t), (1.3)

where D is the (positive) diffusivity, A is the three-dimensional Laplace operator, and
n(x, t) is an environmental noise process,

Example 1.4 (Vibration of a string under random forcing). A vibrating string
being struck randomly by sand particles in a dust storm [6,58] may be modeled by a
stochastic wave equation

uy = gy + nix, 1), (1.4)

where u(x, 1) is the string displacement at position x and time ¢, the positive constant
¢ is the propagation speed of the wave, and n(x, t) is a noise process.

Example 1.5 (A coupled system in molecular biology). Chiral symmetry breaking is
an example of spontaneous symmetry breaking affecting the chiral symmetry in nature.
For example, the nucleotide links of RNA (ribonucleic acid) and DNA (deoxyribonucleic
acid) incorporate exclusively dextro-rotary (D) ribose and D-deoxyribose, whereas the
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enzymes involve only laevo-rotary (L) enantiomers of amino acids. Two continuous
fields a(x,t) and b(x,t), related to the annihilation for L and D, respectively, are
described by a system of coupled stochastic partial differential equations [158]

da = Dy Aa + kia — kaab — kza® + ni(x, 1), (1.5)
3b = D2 Ab + k\b — kaab — k3b® + na(x, 1), (1.6)

where x varies in a three-dimensional spatial domain; D, D> (both positive) and k., k2>
are real parameters; and 1) and 1> are noise processes. When D « D, this is a
slow-fast system of SPDEs.

Example 1.6 (A continuum limit of dynamical evolution of a group of “‘particles”).
SPDEs may arise as continuum limits of a system of stochastic ordinary differential
equations (SODEs or SDEs) describing the motion of “particles” under certain constraints
on system parameters [7,195,196,207,214].

In particular, a stochastic Fisher—Kolmogorov—Petrovsky—Piscunov equation
emerges in this context [102]

ot = Duyy + yu(l —u)+ey/u(l —u)n(x,t), (1.7)

where u (x, t) is the population density for a certain species; D, y, and & are parameters;
and 7 is a noise process.

Example 1.7 (Vibration of a string and conduction of heat under random boundary
conditions). Vibration of a flexible string of length /, randomly excited by a boundary
force, may be modeled as [57,223]

Uy = (‘21{_”. 0<x <, (1.8)

u(0,0) =0, u,(l.t)=n(), (1.9)

where u(x, t) is the string displacement at position x and time 7, the positive constant
¢ is the propagation speed of the wave, and (1) is a noise process.

Evolution of the temperature distribution in a rod of length [, with fluctuating heat
source at one end and random thermal flux at the other end, may be described by the
following SPDE [96]:

Uy = Kiyy, 0<x <, (1.10)
u(0,1) = ni(t). wuy(l, t) = na(t). (1.11)

where u(x, 1) is the temperature at position x and time 7, « is the (positive) thermal
diffusivity, and | and 53 are noise processes.

Random boundary conditions also arise in geophysical fluid modeling [50,51,226].

In some situations, a random boundary condition may also involve the time deriva-
tive of the unknown quantity, called a dynamical random boundary condition
[55,79,297,300]. For example, dynamic boundary conditions appear in the heat transfer
model of a solid in contact with a fluid [210], in chemical reactor theory [211], and
in colloid and interface chemistry [293]. Noise enters these boundary conditions as
thermal agitation or molecular fluctuations on a physical boundary or on an interface.
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Noise will be defined as the generalized time derivative of a Wiener process (or
Brownian motion) W (¢) in Chapter 3.

Note that partial differential equations with random coefficients are called random
partial differential equations (or random PDEs). They are different from stochastic
partial differential equations, which contain noises in terms of Brownian motions.
This distinction will become clear in the next chapter. Random partial differential
equations have also appeared in mathematical modeling of various phenomena; see
[14,279,169,175,208,216,212,228,250].

1.3 OQutlines for This Book

We now briefly overview the contents of this book. Chapters 5, 6 and 7 are partly based
on our recent research,

1.3.1 Chapter 2: Deterministic Partial Differential Equations

We briefly present a few examples of deterministic PDEs arising as mathematical models
for time-dependent phenomena in engineering and science, together with their solutions
by Fourier series or Fourier transforms. Then we recall some equalities and inequalities
useful for estimating solutions of both deterministic and stochastic partial differential
equations.

1.3.2 Chapter 3: Stochastic Calculus in Hilbert Space

We first recall basic probability concepts and Brownian motion in Euclidean space
R” and in Hilbert space, and then we review Fréchet derivatives and Gateaux deriva-
tives as needed for Itd’s formula. Finally, we discuss stochastic calculus in Hilbert
space, including a version of Itd’s formula that is useful for analyzing stochastic partial
differential equations.

1.3.3 Chapter 4: Stochastic Partial Differential Equations

We review some basic facts about stochastic partial differential equations, including
various solution concepts such as weak, strong, mild, and martingale solutions and
sufficient conditions under which these solutions exist. Moreover, we briefly discuss
infinite dimensional stochastic dynamical systems through a few examples.

1.3.4 Chapter 5: Stochastic Averaging Principles

We consider averaging principles for a system of stochastic partial differential equations
with slow and fast time scales:

du® = [Au® + fu®. v)]|dt + o1 dWi (1), (1.12)

1
dv = Z[Av‘ +g(u€.v‘)]dt+%dW3(t). (1.13)



