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Parameter spaces of curves

Joe Harris

Abstract. In this article I will try to survey the state of our knowledge (and the much
greater area of our ignorance) of the geometry of spaces parametrizing curves in
projective space.
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1 Introduction 1
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3.2 Curves of high genus 13
3.3 Non-smoothable nodal curves 17
4 Curves of low and intermediate genus 18
4.1 Curves of low genus 19
4.2 Curves of intermediate genus 23

1. Introduction

Robin Hartshorne, in 6], describes the problem of classifying algebraic varieties
as the guiding problem of algebraic geometry. I'd agree, for the most part; and, since
you're currently reading a book entitled “Handbook of Moduli,” presumably you
would too.

But the question remains: what exactly are we classifying? To be specific,
consider the problem of smooth, complete algebraic curves over C. If you ask
mathematicians today to describe the problem of classifying curves, they would
naturally take “curve” to mean “abstract curve,” in which case the answer to the
problem, “classify all smooth complete curves” would consist of two parts. Algebraic

2000 Mathematics Subject Classification. Primary 14Dxx; Secondary 14Dxx.
Key words and phrases. moduli.



2 Parameter spaces of curves

curves are classified first by their sole discrete numerical invariant, the genus, which
can assume any value g € N; and the set of curves of a given genus g has naturally
the structure of an irreducible quasi-projective variety M 4. Beyond this, the problem
of classifying algebraic curves consists of studying the geometry of the variety M,
and of relating properties of curves to the loci in My of curves with that property.

If you had posed the same question to an algebraic geometer of the 19" century,
however, it would of necessity have been interpreted differently. Abstract curves didn't
exist then (or, depending on your philosophical point of view, they hadn’t been
discovered); the word “curve” would have been taken to mean a subset of projective
space defined by polynomial equations, smooth and irreducible of dimension 1. As
such, a curve had not one but three numerical invariants: its degree d; the dimension
r of the projective space in which it lay (or, more properly, the dimension of its
span); and of course its genus. The problem of classifying all algebraic curves would
thus amount to two things:

(1) To say for which triples g, r and d there exists a smooth, irreducible and
nondegenerate curve of degree d and genus g in P'; and

(2) To describe, for each such triple (g, , d), the geometry of the space }g , 4

parametrizing such curves: its irreducible components, their dimensions

and so on.

In this volume, there are many articles that address aspects of the problem
of classification in its modern sense. But the classical version is still very much of
interest, and has many fascinating aspects that are not fully understood: we haven't
answered the first of the questions above; and we know the answer to the second only
in an extremely limited range of cases. The goal of this article is to give a survey of
what we do know about this problem, and likewise to suggest some of the numerous
open problems.

The remainder of this paper will consist of three parts. In Section 2, we'll discuss
the notion of parameter spaces of curves, and compare the two most commonly used
such spaces, primarily the Hilbert scheme and the Kontsevich space. This may in a
sense not be necessary if we're only concerned with smooth, irreducible curves in
projective space, since the Hilbert scheme and the Kontsevich space have a common
open subset parametrizing such curves (and indeed the reader can skip this section
and go directly to the following ones). But for many purposes it’s useful to have
a compactification of the space of curves, and here the Hilbert scheme and the
Kontsevich space differ dramatically, as we'll see.

In Section 3, we'll describe the conjectured answer to the Existence Problem,
the first of the two questions listed above. This actually tells us a lot about curves
of high genus: when g is more than roughly half the maximal possible genus of an
irreducible, nondegenerate curve of degree d in P, in addition to simply saying which
triples (g, T, d) occur, we learn about the geometry of such curves, and the dimension
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and irreducible components of their families. But for g below this bound, all we can
say is that such curves exist; we can't say much about the spaces parametrizing them

Finally, in Section 4, we address this issue. We can in fact give a pretty explicit
description of the spaces of curves of low genus, using what we know about the
moduli space of abstract curves and Brill-Noether theory. Again, our knowledge—
even conjectured—drops off as we approach the middle range of possible genera;
we'll try to indicate what are some of the main unresolved questions in this area.

2. Parameter spaces

First of all, some terminology. We propose to call a space whose points corre-
spond naturally to isomorphism classes of varieties or schemes X of a given type a
moduli space; we'll call a space whose points correspond naturally to subschemes
X C Z of a fixed scheme Z (not up to isomorphism) a parameter space. There is not
always a clear line dividing the two—for example, the Kontsevich space parameteriz-
ing stable maps has elements of both—but it does reflect an important duality in
how we view geometric objects. One of the fundamental ideas underlying much
recent progress in the theory of curves, for example, is the fact that whenever we
have a one-parameter family {Cy C P"};ca of curves in projective space, with C
smooth for t # to, we have two distinct notions of the “limit” lim_,, C; of the
curves Cy: the flat limit, which is a subscheme of P* whose geometry can be pretty
much arbitrarily messy; and the stable limit, which is the limit of the abstract curves
C: and has at worst nodes as singularities. (Other articles in this volume discuss
alternative notions of stability, and correspondingly alternative definitions of the
limit of the abstract curves Cy; as for the flat limit, we really don't have much of an
alternative to that.)

That said, what should we take as the parameter space for curves of degree d
and genus g in P"? There are principally three answers to this question: the Chow
variety, the Hilbert scheme and the Kontsevich space. These agree on the common
open subset }{¢ , ; parametrizing smooth curves (at least if we ignore the scheme
structure on these spaces), but give very different compactifications of Ho,r,a- Now,
the questions we raised earlier—when do there exist such curves C C P", what are
the irreducible components of g . ; and what are their dimensions—really don't
depend on the choice of compactification, as long as we restrict our attention to
the closure of 3(J , ; in each. But for many other questions it is important to have a
complete parameter space, and so we start with a brief discussion of the properties
of each. Actually, we'll pretty much ignore the Chow variety—in many ways, it has
all the drawbacks of the Hilbert scheme and the Kontsevich space, and none of the

virtues—and focus primarily on the other two.

The following discussion is adapted from a forthcoming book, 3264 and All
That: Intersection Theory in Algebraic Geometry, by the author and David Eisenbud.



