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INTRODUCTION

Should I begin by defining ‘model theory’? This might be unsafe — do the
readers get their money back if the definition doesn’t match the contents?
But here is an attempt at a definition: Model theory is the study of the
construction and classification of structures within specified classes of struc-
tures.

A ‘specified class of structures’ is any class of structures that a mathemati-
cian might choose to name. For example it might be the class of abelian
groups, or of Banach algebras, or sets with groups which act on them
primitively. Thirty or forty years ago the founding fathers of model theory
were particularly interested in classes specified by some set of axioms in
first-order predicate logic — this would include the abelian groups but not the
Banach algebras or the primitive groups. Today we have more catholic tastes,
though many of our techniques work best on the first-order axiomatisable
classes. One result of this broadening is that model theorists are usually much
less interested than they used to be in the syntactical niceties of formal
languages - if you want to know about formal languages today, you should go
first to a computer scientist.

‘Construction’ means building structures, or sometimes families of struc-
tures, which have some feature that interests us. For example we might look
for a graph which has very many automorphisms, or a group in which many
systems of equations are solvable; or we might want a family of boolean
algebras which can’t be embedded in each other. ‘Classifying’ a class of
structures means grouping the structures into subclasses in a useful way, and
then proving that every structure in the collection does belong in just one of
the subclasses. An archetypal example from algebra is the classification of
vector spaces over a fixed field: we classify them by showing that each vector
space has a unique dimension which determines it up to isomorphism. Model
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theory studies construction and classification in a broad setting, with methods
that can be applied to many different classes of structure.

To give this book a shape, and to make it different from books which
other people might write, I chose to concentrate on construction rather than
classification. But that was twelve years ago, when (encouraged by Paul
Cohn) I first sat down to write this book. Since then spells as editor, deputy
head, dean etc. have destroyed any schedule that I ever had for writing the
book, and of course the subject has moved on. The result was that far too
much material accumulated. Some of it I diverted into three other books.
Slightly over one megabyte has been shunted off to a file named Reject - I
say this to appease readers who are annoyed to find no mention of their
favourite topics or papers. The rejected material covers model theory of
fields, atomic compact structures and infinitary languages, among several
other things. These are valuable topics, but I simply ran out of space. (Other
topics are missing out of brute ignorance — for example constructive model
theory.)

Of the three other books, one has already appeared under the title
Building models by games. It was originally a part of the present Chapter 8
(and it included the material that Paul Cohn had asked to see). A second
book provisionally has the title Structure and classification, and will include
much more stability theory. But several authors have already been kind
enough to refer to the present book for some items in stability theory, and so
I have taken the subject far enough to include those items. The third book
will develop quasivarieties and Horn theories. Since this material has become
more important for specification languages and logic programming than it
ever was for model theory, that book will be aimed more at computer
scientists.

After all these adjustments, the present book still has the emphases that I
originally intended, though there is a lot more in it than I planned. Nearly
every chapter is designed around some model-theoretic method of construc-
tion. In Chapter 1 it is diagrams, Chapter 3 includes Skolem hulls, Chapter 5
discusses interpretations as a method of construction, Chapter 6 tackles
elementary amalgamation, Chapter 7 discusses omitting types and the Fraissé
construction, Chapter 8 is about existential closure, Chapter 9 deals with
products, Chapter 10 builds saturated structures by unions of chains, Chapter
11 is about the Ehrenfeucht—Mostowski construction. That leaves Chapters 2,
4 and 12: Chapter 2 covers essential background material on languages, while
Chapters 4 and 12 contain some recent developments of a geometric kind
which I included because they are beautiful, important or both.

In the fourth century BC there was a bizarre philosophical debate about
whether thought goes in straight lines or circles. Aristotle very sensibly
supported the straight line theory, because (he maintained) proofs are linear.
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Plato said circles, for astrological reasons which I wouldn’t even wish to
understand. But writing this book has convinced me that, just this once, Plato
was right. There is no way that one can sensibly cover all the material in the
book so that the later bits follow from the earlier ones. Time and again the
more recent or sophisticated research throws up new information about the
basic concepts. The later sections of several chapters, particularly Chapters 4
and 5, contain recent results which depend on things in later chapters. I trust
this will cause no trouble; there are plenty of signposts in the text.

It would be hopeless to try to acknowledge all the people who have
contributed to this book; they run into hundreds. But I warmly thank the
people who read through sections — either of the final book or of parts now
discarded - and gave me comments on them. They include Richard Archer,
John Baldwin, Andreas Baudisch, Oleg Belegradek, Jeremy Clark, Paul
Eklof, David Evans, Rami Grossberg, Deirdre Haskell, Lefty Kreouzis,
Dugald Macpherson, Anand Pillay, Bruno Poizat, Philipp Rothmaler, Simon
Thomas. I also thank David Tranah of Cambridge University Press for his
encouragement and patience.

I owe a particular debt to Ian Hodkinson. There is no chance whatever
that this book is free from errors; but thanks to his eagle eye and sound
judgement, the number of mistakes is less than half what it would otherwise
have been. His comments have led to improvements on practically every
page. I say no more about his generous efforts for fear of getting him into
trouble with his present employers, who must surely regard this as time
misspent.

Finally a dedication. If this book is a success, I dedicate it to my students
and colleagues, past and present, in the field of logic. Many of them appear
in the pages which follow; but of those who don’t, let me mention here two
thoughtful and generous souls, Geoffrey Kneebone and Chris Fernau, both
now retired, who ran the logic group of London University at Bedford
College when I first came to London. If the book is not a success, I dedicate
it to the burglars in Boulder, Colorado, who broke into our house and stole a
television, two typewriters, my wife Helen’s engagement ring and several
pieces of cheese, somewhere about a third of the way through Chapter 8.

Acknowledgements. The passage of Hugh MacDiarmid, On a raised beach at
the head of Chapter 2 is reprinted by permission of Martin Brian & O’Keefe
Ltd, Blackheath. The lines from Eugéne Ionesco, La Cantatrice chauve at the
head of Chapter 3 are reprinted by permission of Editions Gallimard, Paris.
The radiolarian skeleton at the head of Chapter 12 is reprinted by permission
of John Wiley & Sons, Inc., New York.



NOTE ON NOTATION

Some exercises are marked with an asterisk *. This means only that I regard
them as not the main exercises; maybe they assume specialist background, or
they are very difficult, or they are off centre.

I assume Zermelo—Fraenkel set theory, ZFC. In particular I always assume
the axiom of choice (except where the axiom itself is under discussion). I
never assume the continuum hypothesis, existence of uncountable inacces-
sibles etc., without being honest about it.

The notation x C y means that x is a subset of y; x C y means that x is a
proper subset of y. I write dom(f), im(f) for the domain and image of a
function f. ‘Greater than’ means greater than, never ‘greater than or equal -
to’. P(x) is the power set of x.

Ordinals are von Neumann ordinals, i.e. the predecessors of an ordinal «a
are exactly the elements of «. I use symbols «a, B, vy, 6, i, j etc. for ordinals;
4 is usually a limit ordinal. A cardinal k is the smallest ordinal of cardinality
k, and the infinite cardinals are listed as wy, w; etc. I use symbols k, A, u, v
for cardinals; they are not assumed to be infinite unless the context clearly
requires it (though I have probably slipped on this point once or twice).
Natural numbers m, n etc. are the same thing as finite cardinals.

‘Countable’ means of cardinality w. An infinite cardinal A is a regular
cardinal if it can’t be written as the sum of fewer than A cardinals which are
all smaller than A; otherwise it is singular. Every infinite successor cardinal
k" is regular. The smallest singular cardinal is w, = . ,<, ®,. The cofinality
cf(a) of an ordinal « is the least ordinal § such that a has a cofinal subset of
order-type f; it can be shown that this ordinal f is either finite or regular. If
a and B are ordinals, aff is the ordinal product consisting of S copies of «
laid end to end. If x and A are cardinals, kA is the cardinal product. The
context should always show which of these products is intended.

xii
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Some facts of cardinal arithmetic are assembled at the beginning of section
10.4.

Sequences are well-ordered (except for indiscernible sequences in Chapter
11, and it is explicit there what is happening). I use the notation x, a etc. for
sequences (xg, X1, ...). (ag,a;,...) etc., but loosely: the nth term of a
sequence ¥ may be x, or x(n) or something else, depending on the context,
and some sequences start at x;. Sequences of finite length are called tuples.
The terms of a sequence are sometimes called its items, to avoid the
ambiguity in the term ‘term’. A sequence is said to be non-repeating if no
item occurs twice or more in it. If a@ is a sequence (ag,a;,...) and f is a
map, then fa is (fag, fa;, .. .). The length of a sequence o is written lh(0o). If
o is a sequence of length m and n < m, then o|n is the initial segment
consisting of the first » terms of o. The set of sequences of length y whose
items all come from the set X is written ¥ X. Thus "2 is the set of ordered
n-tuples of 0’s and 1’s; <YX is Uy “X. I write n, §, 0 etc. for linear
orderings; n* is the ordering n run backwards.

I don’t dlstmgmsh systematically between tuples and strings. If @ and b are
strings, @ b is the concatenated string consisting of a followed by b; but
often for simplicity I write it ab. There is a clash between the usual notation
of model theory and the usual notation of groups: in model theory xy is the
string consisting of x followed by y, but in groups it is x times y. One has to
live with this; but where there is any ambiguity I have used xAy for the
concatenated string and x - y for the group product.

Model-theoretic notation is defined as and when we need it. The most
basic items appear in Chapter 1 and the first five sections of Chapter 2.

‘I’ means I, ‘we’ means we.
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1

Naming of parts

Every person had in the beginning one only proper name, except the savages
of Mount Atlas in Barbary, which were reported to be both nameless and

dreamless.
William Camden

In this first chapter we meet the main subject-matter of model theory:
structures.

Every mathematician handles structures of some kind — be they modules,
groups, rings, fields, lattices, partial orderings, Banach algebras or whatever.
This chapter will define basic notions like ‘element’, ‘homomorphism’,
‘substructure’, and the definitions are not meant to contain any surprises. The
notion of a (Robinson) ‘diagram’ of a structure may look a little strange at
first, but really it is nothing more than a generalisation of the multiplication
table of a group.

Nevertheless there is something that the reader may find unsettling. Model
theorists are forever talking about symbols, names and labels. A group
theorist will happily write the same abelian group multiplicatively or addi-
tively, whichever is more convenient for the matter in hand. Not so the model
theorist: for him or her the group with ‘-’ is one structure and the group with
‘+’ is a different structure. Change the name and you change the structure.

This must look like pedantry. Model theory is an offshoot of mathematical
logic, and I can’t deny that some distinguished logicians have been pedantic
about symbols. Nevertheless there are several good reasons why model
theorists take the view that they do. For the moment let me mention two.

In the first place, we shall often want to compare two structures and study
the homomorphisms from one to the other. What is a homomorphism? In the
particular case of groups, a homomorphism from group G to group H is a
map that carries multiplication in G to multiplication in H. There is an
obvious way to generalise this notion to arbitrary structures: a homomorph-
ism from structure A to structure B is a map which carries each operation of
A to the operation with the same name in B.

Secondly, we shall often set out to build a structure with certain properties.
One of the maxims of model theory is this: name the elements of your
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structure first, then decide how they should behave. If the names are well
chosen, they will serve both as a scaffolding for the construction, and as raw
materials.

Aha - says the group theorist — I see you aren’t really talking about written
symbols at all. For the purposes you have described, you only need to have
formal labels for some parts of your structures. It should be quite irrelevant
what kinds of thing your labels are; you might even want to have uncountably
many of them.

Quite right. In fact we shall follow the lead of A. I. Mal'tsev [1936] and
put no restrictions at all on what can serve as a name. For example any
ordinal can be a name, and any mathematical object can serve as a name of
itself. The items called ‘symbols’ in this book need not be written down. They
need not even be dreamed.

1.1 Structures

We begin with a definition of ‘structure’. It would have been possible to set
up the subject with a slicker definition — say by leaving out clauses (1.2) and
(1.4) below. But a little extra generality at this stage will save us endless
complications later on.

A structure A is an object with the following four ingredients.

(1.1) A set called the domain of A, written dom(A) or dom A
(some people call it the universe or carrier of A). The
elements of dom(A) are called the elements of the structure
A. The cardinality of A, in symbols |A|, is defined to be the
cardinality [dom A| of dom (A).

(1.2) A set of elements of A called constant elements, each of
which is named by one or more constants. If ¢ is a constant,
we write ¢ for the constant element named by c.

(1.3) For each positive integer n, a set of n-ary relations on
dom (A) (i.e. subsets of (dom A)"), each of which is named
by one or more n-ary relation symbols. If R is a relation
symbol, we write R for the relation named by R.

(1.4) For each positive integer n, a set of n-ary operations on
dom(A) (i.e maps from (dom A)" to dom(A)), each of
which is named by one or more n-ary function symbols. If F
is a function symbol, we write F* for the function named by
F.
Except where we say otherwise, any of the sets (1.1)—(1.4) may be empty. As
mentioned in the chapter introduction, the constant, relation and function
‘symbols’ can be any mathematical objects, not necessarily written symbols;
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but for peace of mind one normally assumes that, for instance, a 3-ary
relation symbol doesn’t also appear as a 3-ary function symbol or a 2-ary
relation symbol. We shall use capital letters A, B, C, . . . for structures.

Sequences of elements of a structure are written @, b etc. A tuple in A (or
from A) is a finite sequence of elements of A; it is an n-tuple if it has length
n. Usually we leave it to the context to determine the length of a sequence or
tuple.

This concludes the definition of ‘structure’.

Example 1: Graphs. A graph consists of a set V (the set of vertices) and a set
E (the set of edges), where each edge is a set of two distinct vertices. An
edge {v, w} is said to join the two vertices v and w. We can picture a finite
graph by putting dots for the vertices and joining two vertices v, w by a line
when {v, w} is an edge:

One natural way to make a graph G into a structure is as follows. The
elements of G are the vertices. There is one binary relation R®; the ordered
pair (v, w) lies in R if and only if there is an edge joining v to w.

Example 2: Linear orderings. Suppose < linearly orders a set X. Then we can
make (X, <) into a structure A as follows. The domain of A is the set X.
There is one binary relation symbol R, and its interpretation R* is the
ordering <. (In practice we would usually write the relation symbol as <

rather than R.)

Example 3: Groups. We can think of a group as a structure G with one
constant 1 naming the identity 1¢, one binary function symbol - naming the
group product operation - ¢, and one unary function symbol ~! naming the
inverse operation ("D°. Another group H will have the same symbols 1, -,
1. then 1% is the identity element of H, -  is the product operation of H,
and so on.

Example 4: Vector spaces. There are several ways to make a vector space into
a structure, but here is the most convenient. Suppose V is a vector space over
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a field of scalars K. Take the domain of V to be the set of vectors of V.
There is one constant element 0V, the origin of the vector space. There is one
binary operation, + ", which is addition of vectors. There is a 1-ary operation
-V for additive inverse; and for every scalar k there is a 1-ary operation k"
to represent multiplying a vector by k. Thus each scalar serves as a 1-ary
function symbol. (In fact the symbol ‘—’ is redundant, because —" is the
same operation as (—1)".)

When we speak of vector spaces below, we shall assume that they are
structures of this form (unless anything is said to the contrary). The same
goes for modules, replacing the field K by a ring.

Two questions spring to mind. First, aren’t these examples a little
arbitrary? For example, why did we give the group structure a symbol for the
multiplicative inverse ~!, but not a symbol for the commutator [, ]? Why did
we put into the linear ordering structure a symbol for the ordering <, but not
one for the corresponding strict ordering <?

The answer is yes; these choices were arbitrary. But some choices are more
sensible than others. We shall come back to this in the next section.

And second, exactly what is a structure? Our definition said nothing about
the way in which the ingredients (1.1)—(1.4) are packed into a single entity.

True again. But this was a deliberate oversight — the packing arrangements
will never matter to us. Some writers define A to be an ordered pair
(dom (A), f) where f is a function taking each symbol S to the correspond-
ing item S$4. The important thing is to know what the symbols and the
ingredients are, and this can be indicated in any reasonable way.

For example a model theorist may refer to the structure

<R’ +’ ) O, 1) s)-

With some common sense the reader can guess that this means the structure
whose domain is the set of real numbers, with constants 0 and 1 riaming the
numbers 0 and 1, a 2-ary relation symbol < naming the relation <, 2-ary
function symbols + and - naming addition and multiplication respectively,
and a l-ary function symbol naming minus.

Signatures
The signature of a structure A is specified by giving

(1.5) the set of constants of A, and for each separate n > 0, the set
of n-ary relation symbols and the set of n-ary function
symbols of A.
We shall assume that the signature of a structure can be read off uniquely
from the structure.



