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Preface

[Hilbert’s] style has not the terseness of many of our modern authors
in mathematics, which is based on the assumption that printer’s labor
and paper are costly but the reader’s effort and time are not.

H. Weyl [143]

The purpose of this book is to describe the classical problems in additive number
theory and to introduce the circle method and the sieve method, which are the
basic analytical and combinatorial tools used to attack these problems. This book
is intended for students who want to learn additive number theory, not for experts
who already know it. For this reason, proofs include many “unngcgssary” and
“obvious” steps; this is by design.

The archetypical theorem in additive number theory is due to Lagrange: Every
nonnegative integer is the sum of four squares. In general, the set A of nonnegative
integers is called an additive basis of order h if every nonnegative integer can be
written as the sum of 4 not necessarily distinct elements of A. Lagrange’s theorem
is the statement that the squares are a basis of order four. The set A is called a
basis of finite order if A is a basis of order h for some positive integer h. Additive
number theory is in large part the study of bases of finite order. The classical bases
are the squares, cubes, and higher powers; the polygonal numbers; and the prime
numbers. The classical questions associated with these bases are Waring’s problem
and the Goldbach conjgcture.

Waring’s problem is to prove that, for every k > 2, the nonnegative kth powers
form a basis of finite order. We prove several results connected with Waring’s
problem, including Hilbert’s theorem that every nonnegative integer is the sum of
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a bounded number of kth powers, and the Hardy-Littlewood asymptotic formula
for the number of representations of an integer as the sum of s positive kth powers.

Goldbach conjectured that every even positive integer is the sum of at most
two prime numbers. We prove three of the most important results on the Gold-
bach conjecture: Shnirel’man’s theorem that the primes are a basis of finite order,
Vinogradov’s theorem that every sufficiently large odd number is the sum of three
primes, and Chen’s theorem that every sufficently large even integer is the sum of
a prime and a number that is a product of at most two primes.

Many unsolved problems remain. The Goldbach conjecture has not been proved.
There is no proof of the conjecture that every sufficiently large integer is the sum
of four nonnegative cubes, nor can we obtain a good upper bound for the least
number s of nonnegative kth powers such that every sufficiently large integer
is the sum of s kth powers. It is possible that neither the circle method nor the
sieve method is powerful enough to solve these problems and that completely
new mathematical ideas will be necessary, but certainly there will be no progress
without an understanding of the classical methods.

The prerequisites for this book are undergraduate courses in number theory and
real analysis. The appendix contains some theorems about arithmetic functions
that are not necessarily part of a first course in elementary number theory. In a
few places (for example, Linnik’s theorem on sums of seven cubes, Vinogradov’s
theorem on sums of three primes, and Chen’s theorem on sums of a prime and an
almost prime), we use results about the distribution of prime numbers in arithmetic
progressions. These results can be found in Davenport’s Multiplicative Number
Theory [19].

Additive number theory is a deep and beautiful part of mathematics, but for
too long it has been obscure and mysterious, the domain of a small number of
specialists, who have often been specialists only in their own small part of additive
number theory. This is the first of several books on additive number theory. I hope
that these books will demonstrate the richness and coherence of the subject and
that they will encourage renewed interest in the field.

I have taught additive number theory at Southern Illinois University at Carbon-
dale, Rutgers University—New Brunswick, and the City University of New York
Graduate Center, and I am grateful to the students and colleagues who participated
in my graduate courses and seminars. I also wish to thank Henryk Iwaniec, from
whom I learned the linear sieve and the proof of Chen’s theorem.

This work was supported in part by grants from the PSC-CUNY Research Award
Program and the National Security Agency Mathematical Sciences Program.

I would very much like to receive comments or corrections from readers of this
book. My e-mail addresses are nathansn@ alpha.lehman.cuny.edu and nathanson@
worldnet.att.net. A list of errata will be available on my homepage at http://www.
lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson.

Melvyn B. Nathanson
Maplewood, New Jersey
May 1, 1996



Notation and conventions

Theorems, lemmas, and corollaries are numbered consecutively in each chapter
and in the Appendix. For example, Lemma 2.1 is the first lemma in Chapter 2 and
Theorem A.2 is the second theorem in the Appendix.

The lowercase letter p denotes a prime number.

We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero and the em roduct is equal to one.

Let f be any real or complex-valued function, and let g be a positive function.
The functions f and g can be functions of a real variable x or arithmetic functions
defined only on the positive integers. We write

f=0()
or
f<g
or
g>f

if there exists a constant ¢ > 0 such that

| f(X)] < cg(x)

for all x in the domain of f. The constant c is called the implied constant . We
write

f <<a,b,... 8
if there exists a constant ¢ > 0 that depends on a, b, . .. such that

[f(x)] < cg(x)
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for all x in the domain of f. We write

if

f=o0(g)

fx)

lim —— =0.
r=00 g(x)

The function f is asymptotic to g, denoted
N—

f=g,

fim I
xX—00 g(x)

The real-valued function f is increasing on the interval I if f(x;) < f(x;) for all
X1, X2 € I with x; < x;. Similarly, the real-valued function f is decreasing on
the interval 7 if f(x;) > f(x,) for all x;, x, € I with x; < x,. The function f is
monotonic on the interval / if it is either increasing on / or decreasing on /.

We use the following notation for exponential functions:

and

exp(x) = ¢e*

e(x) = exp(2mix) = ™',

The following notation is standard:

Z
R
Rn
ZII
C
2|
Nz
3 s
[x]

the integers 0, £1, £2, ...

the real numbers

n-dimensional Euclidean space

the integer lagtice in R"

the complex numbers

the absolute value of the complex number z

the real part of the complex number z

the imaginary part of the complex number z

the integer part of the real number x,

that is, the integer uniquely determined

by the inequality [x] < x < [x] + 1.

the fractional part of the real number x,

thatis, {x} =x — [x] € [0, 1).

the distance from the real number x

to the nearest integer, that is,

x|l =min{|x —n|:n € Z} = min ({x}, 1 — {x}) € [0, 1/2].
the greatest common divisor of the integers ay, ..., a,

the least common multiple of the integers a;, ..., a,

the cardinality of the set X

the h-fold sumset, consisting of all sums of 4 elements of A
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Part I

Waring’s problem






1

Sums of polygons

Imo propositionem pulcherrimam et maxime generalem nos primi de-
teximus: nempe omnem numerum vel esse triangulum vex ex duobus
aut tribus triangulis compositum: esse quadratum vel ex duobus aut
tribus aut quatuorquadratis compositum: esse pentagonum vel ex duo-
bus, tribus, quatuor aut quinque pentagonis compositum; et sic dein-
ceps in infinitum, in hexagonis, heptagonis polygonis quibuslibet,
enuntianda videlicet pro numero angulorum generali et mirabili pro-
postione. Ejus autem demonstrationem, quae ex multis variis et abstru-
sissimis numerorum mysteriis derivatur, hic apponere non licet. . . .!

P. Fermat [39, page 303]

'T have discovered a most beautiful theorem of the greatest generality: Every number
is a triangular number or the sum of two or three triangular numbers; every number is a
square or the sum of two, three, or four squares; every number is a pentagonal number or
the sum of two, three, four, or five pentagonal numbers; and so on for hexagonal numbers,
heptagonal numbers, and all other polygonal numbers. The precise statement of this very
beautiful and general theorem depends on the number of the angles. The theorem is based
on the most diverse and abstruse mysteries of numbers, but I am not able to include the
proof here. . ..
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1.1 Polygonal numbers

Polygonal numbers are nonnegative integers constructed geometrically from the

regular polygons. The triangular numbers, or triangles, count the number of points
in the triangular array

The sequence of triangles is 0, 1, 3, 6, 10, 15, . ...
Similarly, the square numbers count the number of points in the square array

- [ ]

The sequence of squares is 0, 1, 4,9, 16,25, ....
The pentagonal numbers count the number of points in the pentagonal array

The sequence of pentagonal numbersis 0, 1,5, 12,22,35,.... There is a similar
sequence of m-gonal numbers corresponding to every regular polygon with m
sides.

Algebraically, forevery m > 1, the kth polygonal number of order m+2, denoted
pm(k), 1s the sum of the first & terms of the arithmetic progression with initial value
1 and difference m, that is,

PmK)=1+m+1)+Cm+1)+---+({(k—1)m+1)
A o ez ’,’.
m]\(k2 1) +k.‘)2) = £hH "7

This is a quadratic polynomial in k. The triangular numbers are the numbers

k(k+1)
pr(k) = (; .
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the squares are the numbers
pa(k) = k2,

the pentagonal numbers are the numbers

r k(Bk — 1)
p3(k) = 7
and so on. This notation is awkward but traditional.

The epigraph to this chapter is one of the famous notes that Fermat wrote in
the margin of his copy of Diophantus’s Arithmetica. Fermat claims that, for every
m > 1, every nonnegative integer can be written as the sum of m + 2 polygonal
numbers. of order m + 2. This was proved by Cauchy in 1813. The goal of this
chapter is to prove Cauchy’s polygonal number theorem. We shall also prove the
related result of Legendre that, for every m > 3, every sufficiently large integer is
the sum of five polygonal numbers of order m + 2.

1.2 Lagrange’s theorem

We first prove the polygonal number theorem for squares. This theorem of La-
grange is the most important result in additive number theory.

Theorem 1.1 (Lagrange) Every nonnegative integer is the sum of four squares.

Proof. It is easy to check the formal polynomial identity

(T +x3+x3+x)OT+ Y3+ Y3+ YD) =+ + 73 + 25, (1.1)
where
21 = X1Y1+tX2y2+X3y3+Xays
22 = X1y2 —X2y1 — X3Yat+ X4y3 (1.2)
3 = X1y3 — X3)1 +X2ys — X4)2
24 = X1ya— Xay1 —X2y3t+ X3y,

This implies that if two numbers are both sums of four squares, then their product
is also the sum of four squares. Every nonnegative integer is the product of primes,
so it suffices to prove that every prime number is the sum of four squares. Since
2 =12 + 12 + 0% + 02, we consider only odd primes p.

The set of squares

{a*|a=0,1,...,(p — 1)/2)

represents (p + 1)/2 distinct congruence classes modulo p. Similarly, the set of
integers

{(=b*—1|b=0,1,...,(p — 1)/2}
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represents (p + 1)/2 distinct congruence classes modulo p. Since there are only
p different congruence classes modulo p, by the pigeonhole principle there must
exist integers a and b such that 0 < a,b < (p — 1)/2 and

a’*=—-b*—1 (mod p),
that is,

a’+b*>+1=0 (mod p).
Let a? + b* + 1 = np. Then

p—1)’ p’
pfnp=a2+b2+12+02§2<T> +1<—2—+1<p2,
and so
l<n<p.

Let m be the least positive integer such that mp is the sum of four squares. Then
there exist integers x;, x3, x3, x4 such that

_ .2 2,2, .2
mp =xi+Xx5 +x3+Xx}

and
l1<m<n<p.

We must show that m = 1.
Suppose not. Then 1 < m < p. Choose integers y; such that

yi =x; (mod m)

and
—m/2 < v, <m/2
fori =1,...,4. Then
MY +Yi+yi =xi+x; +xi+xi=mp =0 (mod m)
and

2 2 2 2
mr =y, +y; +y3+y4

for some nonnegative integer r. If » = 0, then y; = O for all i and each x? is divisible
by m?. It follows that mp is divisible by m?, and so p is divisible by m. This is
impossible, since p is prime and 1 < m < p. Therefore, r > 1 and

2 2 2
mr=yy+y;+ \f + _vf < 4(m/2)* = m>.

Moreover, r = m if and only if m is even and y, = m/2 for all i. In this case,
x; =m/2 (mod m) for all i, and so \12 = (m/2)*> (mod m?) and

;) 0. 2 2 2 D 2
mp=x;+x;+x;+x;=4m/2)"=m" =0 (mod m~).
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This implies that p is divisible by m, which is absurd. Therefore,
1 <r <m.
Applying the polynomial identity (1.1), we obtain
mzrp = (mp)(mr)
= (x? +x3 +x3 +x§)(y|2 + y% + y% +y3)

2 2 2 2
=2 +22+Z3+Z4,

where the z; are defined by equations (1.2). Since x; = y; (mod m), these
equations imply that z; = 0 (mod m) fori = 1,...,4. Let w; = z;/m. Then
wy, ..., Wy are integers and

rp=w%+w%+w§+wz’
which contradicts the minimality of m. Therefore, m = 1 and the prime p is the
sum of four squares. This completes the proof of Lagrange’s theorem.

A set of integers is called a basis of order h if every nonnegative integer can be
written as the sum of & not necessarily distinct elements of the set. A set of integers
is called a basis of finite order if the set is a basis of order h for some h. Lagrange’s
theorem states that the set of squares is a basis of order four. Since 7 cannot be
written as the sum of three squares, it follows that the squares do not form a basis
of order three. The central problem in additive number theory is to determine if a
given set of integers is a basis of finite order. Lagrange’s theorem gives the first
example of a natural and important set of integers that is a basis. In this sense, it
is the archetypical theorem in additive number theory. Everything in this book is a
generalization of Lagrange’s theorem. We shall prove that the polygonal numbers,
the cubes and higher powers, and the primes are all bases of finite order. These are
the classical bases in additive number theory.

1.3 Quadratic forms

Let A = (a; ;) be an m x n matrix with integer coefficients. In this chapter, we
shall only consider matrices with integer coefficients. Let A7 denote the transpose

of the matrix A, thatis, A7 = (a,.Tj) is the n x m matrix such that

al; =aj;
fori =1,...,nand j = 1,...,m. Then (AT)" = A for every m x n matrix A,
and (AB)T = BT AT for any pair of matrices A and B such that the number of
columns of A is equal to the number of rows of B.

Let M, (Z) be the ring of n x n matrices. A matrix A € M, (Z) is symmetric if
w. If A is a symmetric matrix and U is any matrix in M, (Z), then UT AU is

also symmetric, since

wTan) =uTATWwhH =UuTAU.



