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Preface: Variability and Fluctuations

Life is fundamentally risky, reflecting the pervasive out-of-equilibrium na-
ture of the surrounding world. Risk is synonymous with uncertainty about
the future, leading not only to potential losses and perils, but also to gains.
This uncertainty results from the numerous dynamical factors entering our
life, giving it spice and color as well as its dangerous flavor. Life consists
of a succession of choices that have to be made with often limited knowl-
edge and in a complex and changing environment. These choices result in a
sequence of often unpredictable outcomes, whose accumulation defines the
specific trajectory characterizing each individual, somewhat similar to the
apparent random trajectory of a leaf carried by a turbulent wind. The notion
of risk is probably one of the most general concepts pervading all the facets
of our life [617, 230].

Risk is a companion to most of our daily activities, professional or pri-
vate. Crossing a street or driving a car involves risk that is quantified by the
statistics of traffic accidents and police reports and which impacts on our
insurance premium. Staying at home is also risky: falling, burning, electrocu-
tion, plane crash, earthquakes, hurricanes, etc. Risk is present in the choice
of a career, in the selection of a college and university program as well as in
the effect of social interactions on the development of children. Any choice is
intrinsically risky, since the existence of a choice implies several alternatives
that are all thought to be possible outcomes, albeit with possibly different
likelihood. In industry, companies have to face a multitude of risks: R&D,
choice of a niche, capital, production, sales, competition, etc., encompassing
all types of risks that, ideally, have to be optimized at each instant. The
apparent random nature of price variations in both organized and emerging
stock markets leads to risky investment choices, with impact on the global
economy and our welfare (retirement funds).

The Earth provides its share of risks, partly overcome with the devel-
opment of technology, but hurricanes, earthquakes, tsunamis, volcanic erup-
tions and meteorites bring episodic destruction each year, constituting as
many Damocles’ swords over our heads. Neither is biological risk negligible,
with endemic epidemics and the emergence of novel diseases. Human soci-
ety, with its technical development and population growth, introduces new
risks: unemployment, strike, dysfunction of cities, rupture of sensitive tech-
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nological structures (hydroelectric dams, chemical plants, oil tankers, nuclear
plants, etc.). Scientific and technical development and the growing interac-
tion between the different organizational levels of human society introduce an
increasing complexity, leading often to an enhanced vulnerability. The weight
of human activity has developed to a point where there are growing concerns
about new planetary risks such as global warming, ozone-layer depletion,
global pollution, demographic overcrowding, and the long-term agricultural
and economic sustainability of our finite planet. Paling’s little book [550]
provides an interesting and stimulating synopsis in which a logarithmic scale
is used to quantify all the risks that we have to face, from the largest, which
are not always those we think about, to the smallest. This logarithmic scale
(similar to the earthquake magnitude scale) reflects the extremely large vari-
ability of risk sizes. The concept of risk thus covers the notion of variability
and uncertainty.

_ Our main goal in this book is to present some of the most useful modern
theoretical concepts and techniques to understand and model the large vari-
ability found in the world. We present the main concepts and tools and illus-
trate them using examples borrowed from the geosciences. In today’s rapidly
evolving world, it is important that the student be armed with concepts and
methods that can be used outside his/her initial specialization for a better
adaptation to the changing professional world. It is probably in the everyday
practice of a profession (for instance as an engineer or a risk-controler in a
bank) that the appreciation of variabilities and of the existence of methods
to address it will be the most useful.

These ideas are of utmost importance in the advancement of the tradi-
tional scientific disciplines and it is in their context that this book.is pre-
sented. The notions of variability, fluctuations, disorder, and non-reprodu-
cibility, on a deep conceptual level, progressively penetrate the traditional
disciplines, which were initially developed using the concepts of averages, or
more generally, of representative elements (as in thermodynamics, mechanics,
acoustics and optics, etc.). Modern physics deals, for instance, with hetero-
geneous composite systems and new materials, chaotic and self-organizing
behaviors in out-of-equilibrium systems, and complex patterns in the growth
and organization of many structures (from that of the universe at the scale of
hundreds of megaparsecs to the minute branchings of a snowflake). It is clear
that these phenomena, are all deeply permeated by the concepts of variability,
fluctuations, self-organization and complexity. In the context of natural evo-
lution, let us mention the remarkable illustrations (evolution and baseball)
presented by S.J. Gould [276], in which the full distribution (and not only
the average) of all possible outcomes/scenarios provides the correct unbiased
description of reality. This is in contrast with the usual reductionist approach
in terms of a few indicators such as average and variance.

The physical sciences focus their attention on a description and under-
standing of the surrounding inanimate world at all possible scales. They ad-
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dress the notion of risk as resulting from the intrinsic fluctuations accompany-
ing any possible phenomenon, with chaotic and/or quantum origins. Math-
ematics has developed a special branch to deal with fluctuations and risk,
the theory of probability, which constitutes an essential tool in the book. We
begin with a review of the most important notions to quantify fluctuations
and variability, namely probability distribution and correlation. “Innocuous”
Gaussian distributions are contrasted with “wild” heavy-tail power law dis-
tributions. The importance of characterizing a phenomenon by its full dis-
tribution and not only by its mean (which can give a very distorted view of
reality) is a recurrent theme. In many different forms throughout the book,
the central theme is that of collective or cooperative effects, i.e. the whole is
more than the sum of the parts. This concept will be visited with various
models, starting from the sum of random variables, the percolation model,
and self-organized criticality, among others.

The first six chapters cover important notions of statistics and proba-
bility and show that collective behavior is already apparent in an ensemble
of uncorrelated elements. It is necessary to understand those properties that
emerge from the law of large numbers to fully appreciate the additional prop-
erties stemming from the interplay between the large number of elements and
their interactions/correlations. The second part (Chaps. 7-15) discusses the
behavior of many correlated elements, including bifurcations, critical transi-
tions and self-organization in out-of-equilibrium systems which constitute the
modern concepts developed over the last two decades to deal with complex
natural systems, characterized by collective self-organizing behaviors with
long-range correlations and sometimes frozen heterogeneous structures. The
last two chapters, 16 and 17, provide an introduction to the physics of frozen
heterogeneous systems in which remarkable and non-intuitive behaviors can
be found.

The concepts and tools presented in this book are relevant to a variety
of problems in the natural and social sciences which include the large-scale
structure of the universe, the organization of the solar system, turbulence
in the atmosphere, the ocean and the mantle, meteorology, plate tectonics,
earthquake physics and seismo-tectonics, geomorphology and erosion, popu-
lation dynamics, epidemics, bio-diversity and evolution, biological systems,
economics and so on. Our emphasis is on the concepts and methods that
offer a unifying scheme and the exposition is organized accordingly. Concrete
examples within these fields are proposed as often as possible. The worked ap-
plications are often very simplified models but are meant to emphasize some
basic mechanisms on which more elaborate constructions can be developed.
They are also useful in illustrating the path taken by progress in scientific
endeavors, namely “understanding”, as synonymous with “simplifying”. We
shall thus attempt to present the results and their derivations in the simplest
and most intuitive way, rather than emphasize mathematical rigor.
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This book derives from a course taught several times at UCLA at the
graduate level in the department of Earth and Space Sciences between 1996
and 1999. Essentially aimed at graduate students in geology and geophysics
offering them an introduction to the world of self-organizing collective be-
haviors, the course attracted graduate students and post-doctoral researchers
from space physics, meteorology, physics, and mathematics. I am indebted to
all of them for their feedback. I also acknowledge the fruitful and inspiring
discussions and collaborations with many colleagues over many years, in-
cluding J.V. Andersen, J.-C. Anifrani, A. Arneodo, W. Benz, M. Blank, J.-P.
Bouchaud, D.D. Bowman, F. Carmona, P.A. Cowie, I. Dornic, P. Evesque, S.
Feng, U. Frisch, J.R. Grasso, Y. Huang, P. Jogi, Y.Y. Kagan, M. Lagier, J. La-
herrere, L. Lamaignere, M.W. Lee, C. Le Floc’h, K.-T. Leung, C. Maveyraud,
J.-F. Muzy, W.I. Newman, G. Ouillon, V.F. Pisarenko, G. Saada, C. Sammis,
S. Roux, D. Stauffer, C. Vanneste, H.-J. Xu, D. Zajdenweber, Y.-C. Zhang,
and especially A. Johansen, L. Knopoff, H. Saleur, and A. Sornette. I am
indebted to M.W. Lee for careful reading of the manuscript and to F. Abry
and A. Poliakov for constructive comments on the manuscript.

UCLA and Nice, Didier Sornette
April 2000
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