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Preface

Recent years have seen an explosion both in the number of new structural
types that have been synthesized and in the number of structural studies
undertaken by X-ray and neutron diffraction methods. Theoretical ideas
to rationalize these new and exciting structural results are much in de-
mand. The theoretical world is however at present divided as to how to
meet this need. One group prefers to perform high-quality molecular or-
bital calculations on a limited series of molecular configurations and relies
heavily on computer-generated numerical data. The other group uses
molecular orbital results from much cruder molecular orbital methods,
leans to a much smaller extent on exact numerology, and tries to find a
symmetry or overlap explanation whenever possible. This second group
has been led by the sterling efforts of Roald Hoffmann whose analogous
treatment of the organic field a decade ago provided the impetus for a
revolution in that area which brought theory and experiment much closer
together.

Both approaches have their role to play. Good calculations are nec-
essary to be able to reproduce detailed electronic properties of molecules
such as photoelectron spectra, for example. But simple theories are of
more interest to the average chemist. As L. S. Bartell has written, *‘By
now chemists are fully accustomed to the gloomy rule of thumb that the
more exact the quantum molecular calculation the more obscured by com-
plexity is the physical interpretation and the less intelligible are the guide-
lines afforded to nonspecialists.” " Similarly, in summarizing the inor-
ganic chemist’s view of molecular theories in 1970, J. W. Faller
concluded: **It is the simple arguments, some naive, some well-founded
on symmetry considerations, all drastic oversimplifications, that are most
successful and practically useful’” (p. 415 in Ref. 194).

Our aim'in this book is to provide the reader with an account of various
simple theoretical models of inorganic stereochemistry. There is no mo-
nopoly on ways to expiain the same structural result, but some of the
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vi PREFACE
models are more generally applicable than others. The angular overlap
model, for example, is widely used throughout this volume and provides
a theoretical link between main group and transition metal stereochem-
istry, two areas that are often viewed separately. Our goal is to lead to
an understanding of molecular structure rather than a cataloguing of nu-
merical structural results in the sense of Hoffmann's comment that
‘... to understand an observable means being able to predict, albeit
-qualitatively, the result that a perfectly reliable calculation would yield
for that observable.””” However it should be constantly borne in mind
when reading and using this book that our simple models are often drastic
“simplifications of the quantum mechanical ‘“‘truth.”’ In one sense they are
just ways to collect together and organize experimental observations.

We hope to show in a general way how a small theoretical armory may
be employed to tackle a range of structural problems. However the book
is not a collection of explanations for each unusual structural quirk. (It
could well be subtitled ‘‘The Structures of Simpie Molecules.’’) The ref-
erences similarly are not all-embracing. The majority of structural results
quoted are to be found in Wells’ elegant volume,?'® in Pearson’s book,'s?
or in the extremely valuable structural bibliographies provided by BID-
ICS" and the Chemical Society’s Specialist Periodical Reports.'®* A com-
prehensive set of references covering experimental and theoretical studies
on structural aspects of small mzin group molecules is to be found in
Gimarc’s recent book.”

One of the problems facing a writer Of a book of this type is whether
to include a discussion of the use of group theoretical methods in con-
structing molecular orbitals. This is done so well in Cotton’s* little book
that the motivation for including a substantial chapter in this volume was
small. Although no significant discussion is included on this topic, the
introductory chapters do include a collection of material basic to the study
of molecular orbital theory.

The book has been read by several people at various stages of its ges-
tation period. Particular thanks are due to T. A. Albright, R. S. Berry,
and R. L. DeKock for their comments and criticisms, to Peri Gruber who
drew the figures, and to Nancy Trombetta who typed the manuscript and
made the many revisions and corrections with patience and good humor.
To Professor Albright [ am particularly indebted for his permission to
reproduce the diagrams of Figure 13.8.

JEREMY K. BURDETT

Chicago, Illinois
May 1980



A Note on Nomenclature

The following symbols and abbreviations appear in the text and are
defined here for convenience:

A = main group atom

M = transition metal atom

H = hydride ligand (with ¢ orbital only)

Y = ligand in general (with 7 and o orbitals)
X = halogen

L = ligand with 7 acceptor properties

B = shared electron pair on VSEPR scheme
E = unshared electron pair

HOMO = highest occupied molecular orbital
LUMO = lowest unoccupied molecular orbital
Is = low spin

is = intermediate spin

hs = high spin

¢ = atomic orbital

{ = molecular orbital

¥ = wavefunction describing electronic state
€ = interaction energy

3(o) = o stabilization energy

2(m) = = stabilization energy

il
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Introductory

Several simple theoretical results are described in this chapter that fa-
cilitate our understanding of the molecular orbital structures-of molecules.
In addition to these, we make extensive use of symmetry and group the-
oretical arguments, a powerful way to derive wavefunctions and classify
energy levels in molecules.

1.1 Perturbation Theory

Of fundamental importance in the application of molecular orbital
ideas to chemical problems is the use of perturbation theory to derive the
wavefunctions and energies of a complex system from those of a much
simpler one, where such information may be more readily obtained. We
shall use the theory in many places throughout this book to view, for

- example, transition metal-—or main group—Iligand interaction or to un-
derstand how molecular orbitals mix when a molecule is distorted.

Consider a system described by a Hamiltonian #© with a set of ei-
genvalues E,,® and eigenfunctions ¥,,” such that

%(O)q,m(()) = Em(o)\ym((!) (11)

Let us now disturb the system by applying a perturbation such that the
perturbed system is described by the new Hamiltonian # = #© + A%’
where A\ is a parameter that allows us to gradually switch on the pertur-
bation. Generally we may write for the new energies and wavefunctions

Ev - E(o) + RE”) + xZE(Z) + e (1‘2)
V' = WO 4 \TD 4 \PD 4 .



2 INTRODUCTORY

where the £ and V' are the nth order corrections to the energy and
wavefunction, respectively. For the perturbed system the Schrédinger
equation becomes for the mth state

[%(0! + )\%I — (E!O) _4» xE‘mH) + A?EM(ZI
+ YD + A, + N, P =0 (1.3)

If this is valid for all values of A\, then the functions multiplying each
power of A must each individually be zero in Equation 1.3. In first order
(terms in \),

(?t(m e Em(()))q,m(ll 4 (gt' - Emil))\l,mzm =0 “4)

If the perturbed wavefunction is approximated as an expansion of the
unperturbed wavefunctions (Equation 1.5),

v, = 2(‘,,(”‘]’,,'0) (1.5)

then

chm(%tm _ E,,,‘o’)‘l’,,,m’ + (%' _Emm)\ym«on =0 (1.6)

In Equation 1.5* the ¥, are orthonormal, that is,

f v, . @ dr = B,, (1.7)
and
N f\y"(ﬂl%(ﬂl\l,”'m) d,r = annEisr, (1.8)
So premultiplying Equation-1.6-by- ¥ and. integrating gives the first-
order correction to the energy,
Em(l) = j\]/m(O)% '\ym(O) dT (1_9)

In applying the results to a real chemical problem we may choose the
value of the dummy parameter A to be equal to unity such that # =
H® + ¥ and E' = E® + E® + ---. The first-order correction to the

* We shall always assume that our ¥, ¥, or & may be written as real functions and so shali
not formally include the complex conjugate in such integrals.



1.1 PERTURBATION THEORY 3

wavefunction is simply obtained by premuitiplying Equation 1.6 by all
other unperturbed wavefunctions ¥, except ¥, and integrating such
that

j \],m(m% ’\I]n(()) dT

v, =
n AEIYIH

L, (1.10)

where the prime indicates that n = m is excluded from the summation
and AE,,, = E,® — E,°.

The second-order correction to the energy (Equation 1.11) is obtained
via extraction of terms from Equation 1.3 containing A%

s

(%(0) - Em(O))\pm(Z) 4 (%' o Emll))\l,m(l) . Em(2>\pm(0) = 0 (]”)
Expanding ¥,® as above,

v, = 2 ¢,y © (1.12)

and substituting into Equation 1.5 gives

e P@E = BT e K
" - E, ")V, -E,”¥,” =0 (1.13)
Premultiplying by ¥,,” and integrating as before gives

AR f v, %'V, dr — E,® =0 (1.14)
which on substitution for ¢,,” gives

EM(Z)

©)gp 1 ) 2
a3 2/ (f‘l,m % ‘l’n dT) (115)

AEmn

Since the numerator is always positive, perturbation by-states higher in
energy than m leads to a negative contribution to the second-order energy,
and perturbation by states lower in energy than m leads to a positive
contribution. We use this result extensively in the discussion in this book.
Higher-order perturbation results are obtained in a similar fashion. Some-
times we use these results as they stand, namely, to view the mixing of
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electronic states ¥ as a result of a perturbation. More often we are in-
terested in the mixing of atomic (¢) or molecular () orbitals as the result
of a perturbation, the results of which are approachable by exactly anal-
ogous mathematics by simply replacing ¥ by & or ¢.

An alternative way exists of obtaining these results which has the
advantage of revealing what is neglected in our analysis above and also
of removing the assumption that the perturbation is small. Manipulation
of the wave equation (see Ref. 144 for details) leads to a secular deter-
minant (Equation 1.16),

Hyw' = (E — E") Hi3 o

Hy' Hy»' — (E — E;)... =0 (1.16)

which describes how the states or orbitals interact with each other when
a perturbation ¥’ is applied to the system; H ' is the integral [ ;% 'y,
dr, and the roots of the determinant give the energy shifts £/” — E, of
each level i that result. As a first approximation to E,, (for example) we
can neglect all the elements in this determinant except H,,,’, in which
case £, = E,,° + H,, , aresult identical to the first-order correction
of Equation 1.9. By neglecting all elements of the determinant that do not
lie in the mth row or mth column, we arrive at the second-order result
of Equation 1.15. Inclusion of more elements of the secular determinant
leads to the results of higher-order perturbation theory. In the following
chapters we use both the secular determinant approach to calculate new
energy levels as the resuit of a perturbation and also the results of second-
order perturbation theory. '

1.2 Overlap Integrals between Atomic Orbitals

To begin we consider some of the simple results of the solution of the
Schrodinger Wave Equation for atoms. In particular we focus on the form
of the wavefunctions and, as we are interested in chemical bonding, the
ways of expressing the overlap integral between two orbitals on different
atoms located in a specific geometric orientation with respect to each
other.

Solution of the Schrodinger wave equation for a single electron, charge
—e, and reduced mass p moving in the potential produced by a nucleus



1.2 OVERLAP INTEGRALS BETWEEN ATOMIC ORBITALS 5

of charge +Ze leads to a series of eigenvalues and eigenvectors (Equation
1.17) defined by the three quantum numbers n, [, and m:

- _pze
B 2H%n?
l‘bnlm = Rnl(r) Ylm(ev d)) (1 ]7)
= R,.(r)Oin(0) q)m(d))

The variables 7, 6, and ¢ are the conventional polar coordinates. The Y,
are spherical harmonics, R,(r) contains the associated Laguerre func-
tions, and the exact analytic form of Equation 1.17 is readily written down.
Note that the energy of the orbital, defined by n, /, and m quantum num-
bers, is independent of / and m and is determined by the value (in non-
relativistic theory at least) of n only. Thus 3s (n/ = 30), 3p(nl = 31), and
3d(nl = 32) are equienergetic. ®(¢) is given by Equation 1.18:

d,, = Ne™ (1.18)

N = 1/V2x is a normalization factor. To avoid the use of complex num-
bers, new functions are defined whenever m # 0. Thus

p:P:=® =N (m=0)

pe @, = %[d). + ®_,] = Ncos & _ (1.19)
B (m==z=1)
p.®, = -—\/ii[cb‘. ~®_]=Nsiné

and their complete angular dependence is cos 8, sin 6 cos ¢, and sin 6
sin ¢, respectively.

For polyelectron atoms the Schrodinger wave equation becomes a
many-body problem and cannot be solved exactly. Approximate solutions
may be obtained by means which are referred to later. The most important

result is that the wavefunctions take a similar form as before (Equation
1.20),

Yaim = Ralr) Yim(0, &) (1.20)

but with the vital difference that R, (r) is not a simple analytic function
and cannot be obtained exactly. The Y,.(6, ¢) are the same sphericai
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harmonics as before and are of course readily determined. However for
single-electron and polyelectronic atoms the overlap integral between two
orbitals on different atoms may be written in a simple fashion, Equation
-1.21, as a product of radial and angular terms:

Sa = Sx(r) F(6, 6, ) (1.21)

S,(r) depends upon the distance between the two atomic centers, the
nature of the atoms a and b (i.e., whether Cd, S, or Na, for example),
and the n and [ values of both orbitals. It is also dependent upon whether
the overlap has local A = o, , or  symmetry. The angular term F(8, ¢,
\) is a simple function of the angular polar coordinates of onc atom relative
to another, different functions being found for different values of A. For
example in Figure 1.1a the overlap integral between a p, orbital on one
atom and a o type orbital on another is simply given by

S =S8,cos9 (1.22)

_%—Jo _@Q‘Qja

Figure 1.1 Overlap integrals between orbitals on two different atoms.

where S, contains all the radially dependent parts of the overlap integral
and cos 6 all the angular dependence. Often for ease of calculation we
need the overlap integral between two orbitals which are defined by a set
of Cartesian axes (Figure 1.1b). In general the result is given by a sum
of terms (Equation 1.23):

S= 3 S.F0,6,\ (1.23)

A=0o,m3

In this particular example the overlap integral is simple S = sin> 8 S,
— cos’ 0 §,. As will be seen on many occasions in this book, knowledge
of the angular dependence only of the overlap integrals, which is the same
irrespective of the chemical nature of a and b and the ab distance, is
invaluable when looking at molecular structure. Tables 1.1 and 1.2 give
values of the angular part of the overlap integrals between pairs of orbitals
after the styles of Equations 1.21 (Figure 1.1a) and 1.23 (Figure 1.15),

respectively. Clearly the values in Table 1.1 are derived from those in
Table 1.2 by a simple geometric transformation.



Table 1.1 Some Useful Overlap Integrals
Between Central-Atom s, p. and d Orbitals
and Ligand o and 7 Orbitals**®

S(s,0) = S,
Ss,m) =0
S(z,0) = HS,
S(z,m) = IS,
S(zm,) =0

S(z%,0) = 33H* - 1S,
S = y4o) = V3IAF? — GYS,
S(xy,0) = V3FGS,
S(xz,0) = V3FHS,
S(yz,0) = V3GHS,
S(ZZ,"TU)(. = \/§HIS.,,
Sz4m,) =0

S&? - yim) = —HIS,
Sx* — yimw,) =0
Skxy,m) =0

Stxy,m,) =1S,
S(xz,m) = (I? — HY)S.,

Sxzm,) =0
Soyz,m) =0
S(yz,m,) = HS,
F = sin 0 cos ¢
G = sin 0 sin ¢
H = cos 6

I =sin9

“m is a ligand = orbital whose axis lies in a plane
containing the z-axis and the ligand; =, is a ligand
« orbital with an axis perpendicular to this plane.
® For p,, d?, f.. etc. wWe use z, 22, xyz, etc.

¢ Ligand lies in xz plane. For more general cases,
manipulation of Table 1.2 is needed.



