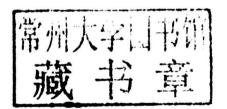


PHYLLIS ILLARI & FEDERICA RUSSO

CAUSALITY

PHILOSOPHICAL THEORY MEETS
SCIENTIFIC PRACTICE

CAUSALITY


Philosophical Theory Meets Scientific Practice

PHYLLIS ILLARI

University College London

FEDERICA RUSSO

Universiteit van Amsterdam

Great Clarendon Street, Oxford, 0x2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford.

It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Phyllis Illari and Federica Russo 2014

The moral rights of the authors have been asserted

First Edition published in 2014 Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2014939866

ISBN 978-0-19-966267-8

Printed in Great Britain by Clays Ltd, St Ives plc

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Causality

此为试读,需要完整PDF请访问: www.ertongbook.com

To David. A Giuseppe.

FOREWORD

ausality has, of course, been one of the basic topics of philosophy since the time of Aristotle. However during the last two decades or so, interest in causality has become very intense in the philosophy of science community, and a great variety of novel views on the subject have emerged and been developed. This is admirable, but, at the same time, poses a problem for anyone who wants to understand recent developments in the philosophy of causality. How can they get to grips with this complicated and often very technical literature?

Fortunately, Part II of this book provides the solution to this problem. In only 171 pages, the authors provide a survey of recent accounts of causality which is clear, comprehensive and accurate. Considering the breadth and complexity of the material, this is a remarkable achievement. The main emphasis in this part of the book is on the research of others, but the authors do include accounts of some of their own work. In chapter 13 (Production Accounts: Information), there is a discussion of Illari's and Illari and Russo's recent work on an informational account of causality. In chapter 15 (Regularity) and chapter 16 (Variation), there is a good presentation of Russo's criticism of Hume's regularity theory of causation, and an exposition of her view that 'variation' rather than 'regularity' is the underlying rationale for causation.

In the remainder of the book (Parts III and IV), the emphasis shifts to the authors' own research, and we find quite a number of interesting and original developments. The authors begin by outlining their approach, which they call: 'Causality in the Sciences'. This is an approach which emphasizes the need for a continual interaction between philosophy and science. It leads to the discussion in chapter 20 of an important, but rather neglected, question about the methodology of philosophy. Should philosophers consider toy examples or examples from science? The literature of the philosophy of causality is filled with the improbable adventures of Billy and Suzy, and one even finds purely imaginary examples such as Merlin causing a prince to turn into a frog. Are such 'toy' examples really of much use for the analysis of causality? Given the authors' Causality in the Sciences approach, one might expect them to prefer examples from science to toy examples, but, in fact, they provide a nuanced account in which there is room for both sorts of example. What is significant here is the consideration of an important topic, which is rarely discussed.

Part IV of the book draws some general conclusions. The authors favour a pluralist view of causality. There is no universal notion of causality, which applies in all contexts, but each of the various analyses of causality does apply in some particular contexts. In the authors' own words (p. 256):

All we are saying is that the full array of concepts of causality developed within philosophy could very well be of interest to practising scientists...

So when trying to apply causality to any particular scientific example, there is a need to construct what the authors call, in a striking phrase, a 'causal mosaic'. They then illustrate the construction of a causal mosaic by considering an example from contemporary science. This is the new research area called 'exposomics' which attempts to find out how exposure to objects of various kinds can cause illnesses. Thus the authors' title *Causality* is not a rhetorical flourish, but a programme, which is actually carried out in the course of the book.

Donald Gillies Emeritus Professor of Philosophy of Science and Mathematics University College London March 2014

ACKNOWLEDGEMENTS

e started working on the idea for this book while we were both at the University of Kent, where we shared not only an office but also a flat. This created intensive collaboration between us (and a 'no causality after 8pm!' rule that Lorenzo Casini will also remember). Although we have since moved to different institutions—and countries—we are deeply indebted to the information and communication technologies that allowed our weekly meetings to take place anyway.

We are most grateful to the editors at OUP who have shown enthusiasm about this project from the very beginning: Beth Hannon, Clare Charles and Keith Mansfield.

Several people read the book at several stages, even as an embryonic book proposal. Their comments, suggestions and criticisms have been invaluable to us. We offer profound thanks to: Prasanta Bandyopaday, Christos Bechlivanidis, Neil Bramley, Silvia Crafa, Roland Ettema, Matt Farr, Alex Freitas, Luciano Floridi, Toby Friend, Tobias Gerstenberg, Stuart Glennan, David Lagnado, Bert Leuridan, Michel Mouchart, John Pemberton, Julian Reiss, Attilia Ruzzene, Paolo Vineis, Adam White, Jon Williamson, Guillaume Wunsch, and especially Donald Gillies and Ian McKay who read the first complete draft cover to cover. They often led us to rethink the structure and rhetoric of the book, which are immeasurably better for their dedication. We would also like to thank the 'Causality in the Sciences' network—both steering committee and attendees over the last eight years—for the very valuable discussions that helped form so many ideas here. We apologize if we have missed anyone, and naturally acknowledge that remaining errors are our own.

During the academic year 2012–13, Federica Russo was Pegasus Marie Curie Fellow, funded by the Fonds Wetenschappelijk Onderzoek (Flemish Research Foundation), while Phyllis Illari was supported by the Arts and Humanities Research Council. During the academic year 2013–2014, Federica Russo was Research at the University of Ferrara.

We have worked closely together on the structure of the book and then on the contents; writing and re-writing, commenting, manipulating and polishing each other's work. In the pages you are about to read, it is really hard to identify the work of one or other of us.¹ The result is that writing it has been enormous fun!

Finally, our deepest thanks go to David and Giuseppe. You know why.

¹ Naturally, we had to decide who would write preliminary drafts of chapters. Phyllis was in charge of chapters 3, 6, 9, 12, 13, 14, 17, 18, 19, 20, 21. Federica was in charge of chapters 2, 4, 5, 7, 8, 10, 11, 15, 16, 22, 23. Chapters 1, 24, and the tables in the appendix are the result of many revisions and intensive co-writing.

CONTENTS

Part I Prelude to Causality

T	PRU	BLEMS OF CAUSALITY IN THE SCIENCES	3
	1.1	Why this book on causality?	3
	1.2	Five scientific problems	4
	1.3	The contents of this book	6
2	A S	CIENTIFIC TOOLBOX FOR PHILOSOPHY	9
	2.1	Methods for finding causes	9
	2.2	Observational methods	10
	2.3	Experimental methods	11
	2.4	Between observation and experiment	14
	2.5	Beyond observation and experiment	15
	2.6	How to make a study work	15
3	A P	HILOSOPHICAL TOOLBOX FOR SCIENCE	19
	3.1	Arguments	19
	3.2	Methods	21
	3.3	Levels of abstraction	22
Pa	rt II	Causality: Accounts, Concepts and Methods	
4	NEC	ESSARY AND SUFFICIENT COMPONENTS	27
	4.1	Examples: electrical short-circuit and AIDS	27
	4.2	Component causes	28
	4.3	INUS causes and related concepts	30
	4.4	Rothman's pie charts	32
5	LEV	ELS OF CAUSATION	35
	5.1	Examples: personalized medicine and migration behaviours	35
	5.2	Three parallel literatures	36
	5.3	Bridging the levels—and the terminology!	41

6	CAUSALITY AND EVIDENCE	46
	6.1 Examples: effects of radiation and smoking causing heart disease	46
	6.2 What do we want to know?	47
	6.3 Evidence for causal relations	51
	6.4 Evidence-based approaches	56
7	CAUSAL METHODS: PROBING THE DATA	60
,	7.1 Examples: apoptosis and self-rated health	60
	7.2 The need for causal methods	61
	7.3 The most widespread causal methods	64
	7.4 Key notions in causal methods	67
8	DIFFERENCE-MAKING: PROBABILISTIC CAUSALITY	75
	8.1 Example: smoking and lung cancer	75
	8.2 Is causality probability-altering?	76
	8.3 Beyond probabilistic causes	82
9	DIFFERENCE-MAKING: COUNTERFACTUALS	86
	9.1 Example: mesothelioma and safety at work	86
	9.2 The unbearable imprecision of counterfactual reasoning	87
	9.3 Philosophical views of counterfactuals	88
	9.4 Counterfactuals in other fields	93
10	DIFFERENCE-MAKING: MANIPULATION AND INVARIANCE	99
	10.1 Example: gene knock-out experiments	99
	10.2 The manipulationists: wiggle the cause, and the effect wiggles too	100
	10.3 What causes can't we wiggle?	103
11	PRODUCTION ACCOUNTS: PROCESSES	111
	11.1 Examples: billiard balls colliding and aeroplanes crossing	111
	11.2 Tracing processes	112
	11.3 How widely does the approach apply?	114
12	PRODUCTION ACCOUNTS: MECHANISMS	120
	12.1 Example: how can smoking cause heart disease?	120
	12.2 What is a mechanism? The major mechanists	121
	12.3 Important features of mechanisms and mechanistic explanation	127
	12.4 What is not a mechanism?	132
13	PRODUCTION ACCOUNTS: INFORMATION	135
	13.1 Examples: tracing transmission of waves and of disease	135
	13.2 The path to informational accounts	136
	13.3 Integrating the informational and mechanistic approaches	143
	13.4 Future prospects for an informational account of causality	146

14	CAPACITIES, POWERS, DISPOSITIONS	150
	14.1 Examples: systems in physics and biology	150
	14.2 The core idea of capacities, powers and dispositions	151
	14.3 Capacities in science: explanation and evidence	154
15	REGULARITY	161
	15.1 Examples: natural and social regularities	161
	15.2 Causality as regular patterns	162
	15.3 Updating regularity for current science	164
16	VARIATION	167
	16.1 Example: mother's education and child survival	167
	16.2 The idea of variation	168
	16.3 Variation in observational and experimental methods	172
17	CAUSALITY AND ACTION	178
	17.1 Example: symmetry in physics; asymmetry in agency	178
	17.2 Early agency theorists	179
	17.3 Agency and the symmetry problem	181
	17.4 Agency and action	183
	17.5 Problems for agency theories	184
	17.6 Merits of agency theories	186
18	CAUSALITY AND INFERENCE	188
	18.1 Example: combatting the spread of AIDS	188
	18.2 Different sorts of inferences	189
	18.3 Does inferentialism lead to anti-realism?	194
	18.4 The heart of inference	195
Pa	art III Approaches to Examining Causality	
19	HOW WE GOT TO THE CAUSALITY IN THE SCIENCES	
	APPROACH (CITS)	201
	19.1 A methodological struggle	201
	19.2 Causality and language	202
	19.3 Causality, intuitions and concepts	203
	19.4 Causality in the sciences	206
20	EXAMPLES AND COUNTEREXAMPLES	211
	20.1 Examples of examples!	211
	20.2 Toy examples or scientific examples?	214
	20.3 Counterexamples	220

21	TRUTH OR MODELS?	227
	21.1 Two approaches to causal assessment	227
	21.2 Causal assessment using models	228
	21.3 Causal assessment identifying truthmakers	230
	21.4 Truth or models?	233
22	EPISTEMOLOGY, METAPHYSICS, METHOD, SEMANTICS, US	E 237
	22.1 Fragmented theorizing about causality	237
	22.2 Which question to answer when?	240
	22.3 Which question interests me?	242
	22.4 Should we integrate the fragments?	243
Pa	art IV Conclusion: Towards a Causal Mosaic	
23	PLURALISM	249
	23.1 If pluralism is the solution, what is the problem?	249
	23.2 Various types of causing	250
	23.3 Various concepts of causation	251
	23.4 Various types of inferences	252
	23.5 Various sources of evidence for causal relations	253
	23.6 Various methods for causal inference	253
	23.7 The pluralist mosaic	255
2.4	THE CAUSAL MOSAIC UNDER CONSTRUCTION:	
24	THE EXAMPLE OF EXPOSOMICS	258
	24.1 Making mosaics	258
	24.2 Preparing materials for the exposomics mosaic	260
	24.3 Building the exposomics mosaic	267
AP	PPENDIX ACCOUNTS, CONCEPTS AND METHODS:	
	SUMMARY TABLES	273
	A.1 The scientific problems of causality	27
	A.2 The philosophical questions about causality	27
	A.3 The accounts: how they fare with scientific problems	274
	A.4 The accounts: how they fare with philosophical questions	27
Ro	eferences eferences	28
	der	30

PART I

Prelude to Causality

In this part of the book we introduce and illustrate five scientific problems of causality that the accounts, concepts, and methods of Part II have to deal with. We also provide a basic scientific and philosophical toolbox to be used throughout the book.