R

~ me Object Concept

AN INTRODUCTION TO COMPUTER PROGRAMMING USING C++

3.5” IBM PC
Compatible
Disk
Enclosed

ONCEPT

An Introdu mputer
Programming Using C++

RICK DECKER
STUART HIRSHFIELD
Hamilton College

PWS Publishing Company

I@P International Thomson Publishing Company

Boston * Albany * Bonn * Cincinnati * Detroit * London * Madrid
Melbourne * Mexico City * New York ¢ Paris * San Francisco
Singapore * Tokyo * Toronto * Washington

PWS PUBLISHING COMPANY
@ 20 Park Plaza, Boston, Massachusetts 02116-4324

Copyright © 1995 by PWS Publishing Company, a division of International Thomson Publishing Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without the prior written permission of PWS Publishing Company.

I @ PTM International Thomson Publishing

The trademark ITP is used under license.

For more information, contact:

PWS Publishing Co. Nelson Canada International Thomson Publishing GmbH
20 Park Plaza 1120 Birchmount Road Konigswinterer Strasse 418
Boston, MA 02116 Scarborough, Ontario 53227 Bonn, Germany
Canada M1K 5G4
International Thomson Publishing Europe Thomas Nelson Australia International Thomson Publishing Asia
Berkshire House 168-173 102 Dodds Street 221 Henderson Road
High Holborn South Melbourne, 3205 #05-10 Henderson Building
London WC1V 7AA England Victoria, Australia Singapore 0315
International Thomson Publishing Japan International Thomson Editores
Hirakawacho Kyowa Building, 31 Campos Eliseos 385, Piso 7
2-2-1 Hirakawacho Col. Polanco
Chiyoda-ku, Tokyo 102 11560 Mexico D.F., Mexico
Japan
1];:;:3; o; (iZC(I:gress Cataloging-in-Publication Data @ This book i; printed .
i recycled, acid-free paper.
The object concept : an introduction to computer programming using

C++/Rick Decker, Stuart Hirshfield
p. cm.
Includes index.
ISBN 0-534-20496-1
1. C++ (Computer program language) 2. Object-oriented program-
ming (Computer science) I. Hirshfield, Stuart. 1II. Title.

QA76.73.C153D43 1995 94-41156

005.13°3—dc20 CIP
Sponsoring Editor: Michael J. Sugarman Interior Designer: Catherine Hawkes Design
Developmental Editor: Mary Thomas Cover Designer: Julia Gecha
Production Editor: Abigail M. Heim Cover Artist: Angela Perkins
Marketing Manager: Nathan Wilbur Typesetter and Interior lllustrator: Pure Imaging
Manufacturing Coordinator: Lisa Flanagan Cover Printer: New England Book Components
Editorial Assistant: Benjamin Steinberg Text Printer and Binder: Quebecor Printing/Martinsburg

Cover Image: The TINKERTOY® product © 1993 by Playskool, Inc., a division of Hasbro, Inc. All rights reserved. Used with
permission.

Printed and bound in the United States of America.
97 98 99—10 9 8 7 6 S

For Barb and Joanne

’ Motivation

Our dual goals in developing this text/lab package were (1) to render the
concepts of object-oriented programming accessible and useful to novice pro-
grammers and (2) to do so in a manner that was coherent and meaningful to
those of us who would be asked to teach these concepts. As such, the package
can be viewed as representing a departure from traditional introduction to pro-
gramming texts. We don’t see it that way. Rather, it appears to us to be an evo-
lutionary approach that applies common sense, established pedagogical
techniques, and current software technology to the problems of teaching un-
dergraduates to solve problems with computers. Further, it does so in a way
that builds on all of our collective experience teaching programming.

Our own experience in recent years has been increasingly frustrating. De-
spite our best efforts (teaching Pascal; using highly interactive and supportive
programming environments; incorporating hands-on laboratory experiences;
providing students with interesting and complete sample programs to read,
analyze, and experiment with; and so on), all but our very best students ap-
peared to us to lack what are currently regarded as basic software engineering
skills. That is, of those students who produce working programs, relatively
few write programs that can be considered modular, readable, testable, and
maintainable. Still fewer are capable—even after a typical CS1 course—of an-
alyzing, specifying, designing, and managing even modest-sized programs of
their own. Rhetoric and current programming texts notwithstanding, our stu-
dents were not being trained as problem solvers and were not developing skills
that we regarded as essential to both their subsequent course work and to their

Xy

Preface

careers. Our frustration has led us to reconsider what and how we are teaching
novice programmers.

Object-Oriented Programming in CS|

This package reflects the position that the object-oriented paradigm is the one
best suited for teaching introductory programming. Philosophically, this ap-
proach is justified by our feeling that the real value of the paradigm (and its sig-
nificance to computer science education) is that it effectively raises the level of
abstraction for all programmers, novices included. Who, after all, stands to
benefit more from a higher-level programming interface than do novices?

From the more practical standpoint of course content, the decision to
teach object-oriented programming (OOP) in CS1 is justified on the grounds
that it extends the familiar procedural paradigm to effectively address all of
the aforementioned frustrations. Generally speaking, OOP emphasizes a stra-
tegic, problem-solving approach to programming. Such an approach, in
which design decisions are not only paramount, but are also clearly reflected
in the resulting code, brings us a step closer to the idealized program devel-
opment life cycle that most of us have been advocating for some years now.
Indeed, OOP supports directly many of the software engineering concepts
that are among the most difficult to convey in procedural terms: code reuse,
encapsulation, incremental development and testing, and, of course, program
design.

Our Approach

Programming texts have for many years been organized around the fundamen-
tal syntactic and semantic constructs supported by the language being taught.
In the most recent past, these constructs were primarily procedural. As subpro-
grams, for example, came to be regarded as important to effective program-
ming, they were increasingly emphasized and, in many cases, moved to earlier
chapters in texts. Data types and data abstraction were introduced as needed
to support the development of more ambitious algorithms. We have applied
similar thinking to teaching object-oriented programming. We have identified
the fundamental, empowering constructs of the paradigm—those that support
most directly the identification, creation, and use of high-level classes—and
pushed them to the fore, essentially reversing the order of presentation of what
are otherwise conventional CS1 topics. Algorithmic constructs are introduced
in this context as a means to support class implementations.

What is distinctive about this approach is the fact that we do more than
acknowledge the object-oriented paradigm —we embrace it. We focus from the
outset on the object-oriented features of C++; that is, how classes are declared,
defined, used, and organized into coherent designs. In the first part of the
course, we concentrate on using classes as the basis for program specification

Preface xvii

and design. Then, in the second part of the course, the predefined types of C++
are described in object-oriented terminology; that is, as related combinations
of data, operators, and functions. The basic concepts of inheritance, construc-
tion, access control, and overloading are described in the third section. Thus,
students are provided with both a framework and the building blocks with
which they can define classes of their own, the primary activity of the final part
of the course. Throughout the course, full-blown sample programs are used
both to illustrate specific OOP and C++ features, and to allow students to in-
teract with classes on a variety of levels.

The advantages of this approach to teaching novices are both numerous
and tangible. First, introducing the object-oriented paradigm from the begin-
ning allows us to exploit it as a design medium. Second, doing so puts the pro-
cedural paradigm (along with the ideas of top-down design and stepwise
refinement) into a meaningful and useful problem-solving context. Third, it
eliminates (at least, for the student!) the dreaded “paradigm shift” from proce-
dural programming to object-oriented programming. Finally, and most impor-
tant, it helps students to develop their problem-solving skills in conjunction
with their programming skills.

Why C++?

A simplistic—and not totally irreverent—answer to the question of why we
chose to write the book around C++ is “Why not?” If what we are hearing from
industry and our students and what we are seeing at conferences is indicative, C
is being replaced by its natural superset, C++, in the “real world.” Truth be told,
the pressure to teach C++ in the interest of better preparing our students for em-
ployment was, for us, a great reason 7ot to use it as the language for this text.
We succumbed—and have subsequently become converted—for a number of
other reasons.

p First and foremost, C++ matches our interpretation of object-oriented pro-
gramming. That is, just as the object-oriented paradigm extends the proce-
dural one to incorporate user-defined classes, C++ is advertised as an
extension of modern procedural languages with the features necessary to
support classes.

p The fact that C++ is a hybrid language (not necessarily “purely” object-ori-
ented) is also an advantage because it allows our (and some of our stu-
dents’) experience with algorithms and top-down design to come more
directly into play than it might have had we chosen a “pure” OOP lan-

guage.

» Most implementations of C++ support all of the modern software engi-
neering concepts (for example, separately compilable files, incremental de-
velopment and testing, and reusable code libraries) that we want students
to take advantage of early in their programming experience.

xviii

Preface

» Although most of the reasons we had for adopting Pascal (over C) as the
language for teaching CS1 some years ago still hold, C++ succeeds in over-
coming most of what we regarded as the awkwardnesses of C (by, for
example, providing reference parameters and loosening its dependence on
the preprocessor). In short, we regard C++ as much more than “a better
C.” Based on its strengths as a design tool and its support of the entire soft-
ware engineering life cycle, we consider it a better Pascal and thus an ex-
cellent choice for teaching CS1.

Pedagogy

Our approach to teaching CS1 has clearly changed, but the basic content and
the goals of the course have not. It should not be surprising, then, that two of
the pedagogical techniques that have proven most useful in teaching introduc-
tory programming have been adapted to the task of teaching object-oriented
programming. First, our course is lab based. We provide students with detailed,
directed, experimental laboratory exercises that help them explore firsthand
the principles of OOP in a controlled fashion. Quoting from the preface of our
(similarly lab-based) text, Pascal’s Triangle, “These exercises are integrated
precisely with the textual material and serve to bring the static text material to
life. We’ve used a lab-based approach at our school for ten years for one main
reason—it works.”

In addition, each lab/chapter pair is based on a complete, working, moti-
vating, and interesting sample program (a Program in Progress, or “PIP”)
written to illustrate particular language and OOP features and to provide a ve-
hicle for experimentation in lab. Students are introduced to new concepts in
the text. In the process of reading the text, students read the chapter’s PIP,
which is used to illustrate the new concepts. Then, in the laboratory they use
the PIP they have read, experiment with it, and extend it using what they have
learned from the text. With the exception of Chapter 1 (in which the students
type in the PIP to gain practice with editing programs in their environment),
all the PIPs are provided on the lab disk that accompanies the text.

The Details

Much about the organization of this package will look familiar to you. There
are eleven chapters, each with a corresponding lab, roughly one for each week
to fit a traditional semester once exams and review classes are figured in. We
cover all of the traditional CS1 programming topics (admittedly, in an uncon-
ventional order) and wind up with presentations of algorithms and abstract
data types—right where we want to be for CS2.

Conceptually, we have divided the text into four sections. The first section
is devoted to providing students with the vocabulary and methodology needed
to describe problems in object-oriented (or, more accurately, “class-oriented”)

Preface XIX

terms. Chapter 1, “Designing with Classes,” describes briefly the evolution of
and motivation for the object-oriented paradigm and provides some real-world
examples of hierarchical systems. Next, we introduce the topic of program de-
sign and demonstrate how classes can effectively serve as a means for high-level
program description. Finally, we introduce a simple method and notation,
which we have dubbed the “Declare-Define-Use” approach, for relating pro-
gram descriptions and C++ code. This early concentration on “description”
helps students to focus on problem analysis and design without worrying about
the details of implementation (which is particularly easy since students haven’t
seen C++ yet!). To be sure, we don’t expect them to appreciate the coding de-
tails of the PIP for Chapter 1. On the other hand, the program (a stop-watch
simulation) is conceptually simple enough that it can be read and used as we
intended: to illustrate the correspondence between an object-oriented descrip-
tion of a problem and its more formal representation in C++.

Chapters 2 through 6 comprise the second section of the text. Collectively,
these chapters describe the basic data types of C++ in formal, class-oriented
terms. The goals are to convince students that class description is the fundamen-
tal activity of C++ programming and to establish both a problem-solving frame-
work and a C++ vocabulary with which they can come to define their own
classes. “The Ingredients of Classes,” that is, primitive data types, operators, and
simple functions, are introduced in Chapter 2. The Chapter 2 PIP is a fraction
package that references both a standard and a user-defined library to illustrate
the basic structure and organization of a C++ program.

Chapters 3 and 4 describe the basic algorithm control structures of C++ in
the context of defining member functions. The PIPs for these chapters combine
to form a single program that simulates a soda machine. The design and imple-
mentation of the machine itself, along with the C++ repertoire of selection
statements, are presented in Chapter 3. The classes that support a general,
menu-based interface are developed with the help of C++ repetition statements
in Chapter 4. In both chapters, we emphasize how control structures fit into an
object-oriented paradigm. Rather than being used as a basis for making high-
level design decisions, they serve to express algorithmic details in a top-down
fashion within the context of an object-oriented design.

Chapter 5, entitled “Compound Data,” presents the composite classes of
C++, including arrays, structures, and enumerations. Again, these concepts are
rendered somewhat less intimidating by virtue of the fact that students are al-
ready familiar with the C++ notation for describing classes, a natural extension
of structures. The PIP for this chapter, a card-playing program, demonstrates
both the access operators for the composite classes and the language control
structures that facilitate their use.

We discuss the topics of pointers and references in Chapter 6, each being
described as a derived class. The dereferencing and address operators are illus-
trated, as are the allocation and deallocation functions . Arrays and strings are
also described in pointer-based terminology. In presenting these topics, we con-
centrate exclusively on the notions of indirection and notation, leaving for

XX

Preface

Chapter 11 the more complex uses of pointers in abstract data types. The chap-
ter’s PIP is a simple phone directory that makes use of dynamic allocation.

The third major section of the text spans Chapters 7-9 and describes user-
defined classes in much the same way as the built-in classes of C++ are described
in section two. The obvious difference is that in this section we have the pre-
defined classes to work with, thus enabling us to define higher-level classes that
reflect the real-world applications they are intended to model. As you would ex-
pect, these chapters tend to emphasize the more purely “object-oriented” fea-
tures of C++.

Chapter 7, for example, is entitled “Process I: Organizing and Controlling
Classes,” and its PIP is an elevator simulation. The C++ mechanisms for con-
trolling access to member data and functions (private, public, and friends) are
described, as is its means for enforcing type-safe linkage. The reference to “pro-
cess” in the chapter’s title is not to be taken lightly. This is the first of two chap-
ters (the other being Chapter 9) that is devoted primarily to the process of
programming. This chapter focuses on program design and develops more fully
our DDU approach and its relation to C++.

Class inheritance is the topic of Chapter 8. We illustrate, through a payroll
program PIP, how one derives classes from others. This, in turn, motivates a
discussion of how to further control access to member functions and data via
protected and static descriptors, as well as a more thorough treatment of class
(in particular, base class) constructors. The topics of heterogeneous lists and
polymorphism also are introduced, as our PIP prints paychecks for a variety of
employee types.

Chapter 9, “Process II: Working with Classes,” reconsiders the program
development process in light of the C++ experience students have now had. As
such, the chapter serves as a recap of the first three sections of the text and as
a natural concluding point for many traditional CS1 syllabi. The intention is to
show how the DDU approach can be used with C++ to not only design and
code programs, but also to test, debug, and maintain programs. The program
in this case is a simple word processor that uses the standard stream and string
libraries along with our own extended string package.

The theme of the fourth and final section is defining general classes (for ex-
ample, our string library from Chapter 9) that support the description and im-
plementation of application-oriented classes. This leads to natural discussions
of algorithm analysis (as illustrated by a collection of functions that implement
searching and sorting techniques in Chapter 10) and finally to abstract data
types in Chapter 11. The final PIP introduces the topic of generic types in the
context of a linked list package.

As with most texts, this one can be used in a variety of ways to accommo-
date your goals for CS1 and your academic calendar. At Hamilton, with our
13-week semester, we cover Chapters 1 through 9 in order, using about one or
two weeks per chapter. We spend slightly more time on Chapters 2 and 3 (to
make sure that students are comfortable with the basic data types and algo-

Preface XXI

rithm control structures) and Chapter 9 (to emphasize solid program develop-
ment skills), and devote whatever time remains to in-class exams and to
covering either Chapter 10 or 11.

SUPPLEMENTARY MATERIAL In addition to the data disk (IBM PC
compatible) included with this book, and the accompanying Lab Manual, an
Instructor’s Manual is available from the publisher. A Macintosh version of the
data disk is also available from the publisher.

Peroration

So there you are—you hold in your hands the makings of a one-semester intro-
duction to programming course suitable for use in CS1. It applies established
pedagogical techniques to the task of teaching high-level problem -solving skills
to novice programmers. It illustrates clearly via meaningful examples the utility
and power of the object-oriented paradigm and encourages students to work
like professional programmers right from the start of their programming ca-
reers. Finally, it does so in a way that supports the way most of us have been
teaching introductory programming for many years, and it fits naturally with
a standard computer science curriculum.

While this project was in many ways our creation, it would not exist in its
present form were it not for the contributions of many talented and dedicated
people. Our thanks go out, in parallel, to the following people for their insight-
ful reviews:

Owen Astrachan Frank Kelbe
Duke University

Tom Bullock Soheil Khajenoori

University of Florida University of Central Florida
Mark Ciampa Stephen P. Leach

Volunteer State Community Florida State

College University

George Converse John A. N. Lee

Southern Oregon State Virginia Polytechnic Institute and
College State University

Charles Dierbach Daniel Ling

Towson State University Okanagan University College
Linda Elliott Robert Lipton

La Salle University Pennsylvania State University,

Schuylkill

Preface
Bruce Mabis Jim Slack
University of Southern Indiana Mankato State University
Nathaniel G. Martin John Stoneback
University of Rochester Moravian College
Robert Noonan David B. Teague
College of William & Mary Western Carolina University
Martin Osborne Christian Vogeli
Western Washington University Grand Valley State University
Frank Paiano Raymond E Wisman
Southwestern Community Indiana University,
College Southeast
Rich Pattis Lynn R. Ziegler
University of Washington St. Jobn’s University

Special thanks, also, to Mike Sugarman, Susan McCulley, Abby Heim, Frank
Ruggirello, and Tammy Goldfeld, each of whom influenced the final product
(and, in some cases, the authors) in some significant and positive way. Now, let’s
get on with it.

Rick Decker
Stuart Hirshfield

CONTENTS

DESIGNING WITH CLASSES |

1]

12

13

14

COMPUTERS, PROGRAMS, AND PEOPLE

Computers 2
Programs 4

People 8

OBJECTS AND CLASSES 9
Objects 9

Classes I

Inheritance 13

PROGRAMMING WITH CLASSES 15

Deciding on the Classes to Use 16

Describing Communication Among Objects 17
Describing the Classes 18

Hiding Information Within Classes 18

PROGRAM IN PROGRESS: A DIGITALTIMER

Declaring, Defining, and Using Classes 21
Declaration: The File “DIGITIME.H” 22
Definition: The File “DIGITIME.CPP” 25
Use: The File “PIP1.CPP” 28

21

vii

viii

l.5
1.6

cl

£.0

£.J

o4

£.0
.b
e/

c.0
c.]

Contents

SUMMING UP 30
EXERCISES 31

THE INGREDIENTS OF CLASSES 35

ATOMIC DATATYPES 36

The Integral Types 36

The Floating Types 37

The Character Type 37

Declaring and Defining Objects: Variables and Constants

SIMPLE OPERATORS 39

Numeric Operators 39
Assignment Operators 41

STATEMENTS 43

Declaration Statements 43
Expression Statements 44
Compound Statements 44
Scope 45

FUNCTIONS 45

Declaring Functions 46
Defining Functions 48
Using Functions 49

FILES AND LIBRARIES 51
Simple Input and Output: The iostream Library 53

38

PROGRAM IN PROGRESS: A FRACTION PACKAGE 55

Designing the PIP 55

EXPLORING THE PIP 56

Declaration: The File “FRACTION.H” 57
Definition: The File “FRACTION.CPP” 59
Use: The File “PIP2.CPP” 62

SUMMING UP 64
EXERCISES 67

Contents

CLASSACTIONS I: SELECTION STATEMENTS

31

X
33

34
35

SELECTION STATEMENTS 72

Logical Operators and Expressions 73

To Do or Not to Do: The if Statement 74

Designing for Comprehensibility 78

Selecting Among Many Choices: The switch Statement 80

PROGRAM IN PROGRESS: SODA MACHINE 82
Designing the PIP 82

EXPLORING THE PIP 88

Declaration: The File “MACHINE.H” 88
Definition: The File “MACHINE.CPP” 89

SUMMING UP 94
EXERCISES 95

CLASS ACTIONS II: REPETITION STATEMENTS

4]

4e
43

T

45
46

REPETITION STATEMENTS 100
The while and do Statements 101

The for Statement 106

Designing for Comprehensibility 109

USER INTERFACE 13

PROGRAM IN PROGRESS: A MENU-BASED INTERFACE
Designing the PIP 116
EXPLORING THE PIP 117

Declaration: The Files “USER.H” and “UTILITY.H” 117
Definition: The Files “USER.CPP” and “UTILITY.CPP” 119
Use: The File “PIP4.CPP” 123

SUMMING UP 124
EXERCISES 125

ix

71

99

116

Contents

COMPOUND DATA 132

5 'I ARRAYS 133

Declaring Arrays 134
Defining Arrays 136
Using Arrays 139

5 E CLASSES, REVISITED 143

Declaring Classes 143
Defining Classes 146
Using Classes 150

5 3 PROGRAM IN PROGRESS: BLACKJACK 151
' Designing the PIP 152

Cards and Decks: The Files “CARDDECK.H” and “CARDDECK.CPP” 153
Players: The Files “PLAYER.H” and “PLAYER.CPP” 158

Dealers: The Files “DEALER.H” and “DEALER.CPP” 161

The Finished Program: The File “PIP5.CPP” 169

5 4 SUMMING UP 171
5 5 EXERCISES 172

POINTERS AND REFERENCES 180
B] POINTERS 181

Pointers and Arrays 183

The new and delete Operators 186
Dynamic Arrays 189

Pointers and Strings 191

Pointers as Links: A Preview 195

E E REFERENCES 196

Reference Types 197
Reference Arguments 198

B 3 MORE INPUT AND OUTPUT 198
) Input: The Class istream 201

E 4 DESIGNING THE PIP: A PHONE DIRECTORY 202

E 5 EXPLORING THE PIP 205

Entries: The Files “ENTRY.H” and “ENTRY.CPP” 205
The Directory: The Files “FONEBOOK.H” and “FONEBOOK.CPP” 207
The Main Program: The File “PIP6.CPP” 214

b.b
b.7

Contents

SUMMING UP 216
EXERCISES 217

PROCESS I: ORGANIZING AND CONTROLLING

A
2

13
/4
1.5

16
11

CLASSES 222
SOFTWARE ENGINEERING 223

THE TRADITIONAL SOFTWARE LIFE CYCLE 224
Specification 225

Design 226
Implementation 226
Testing 227

Maintenance 227
THE DECLARE-DEFINE-USE APPROACH, REVISITED

FILES, LINKAGE, AND THE DDU 235

PROGRAM IN PROGRESS: RIDING AN ELEVATOR

Preliminaries: Program Specification 239
Step |: Identify Classes 239

Step 2: Choose a Class 240

Step 3: Declare the Class Elevator 240

Step 4: Define the Class Elevator 243

Step 5: Use the Class Elevator 245

Step 6: Declare the Class Rider 246

Step 7: Define the Class Rider 250

Step 8: Use and Integrate the Class Rider 252
Step 9: Reconsidering Some Decisions 254

SUMMING UP 257
EXERCISES 258

INHERITANCE 260

Bl
B.c
8.3

HIERARCHY AND INHERITANCE 261
BASE AND DERIVED CLASSES 263
INHERITANCE AND ACCESS CONTROL 267

228

238

Xi

