:
- : — - i : ;
iy X ‘ 4
E . [5 v - J F
A Ty : -
l‘/ A . ¢ ; o — R
/ - W 3 b -
.4 T 1) & e B Y % L P ;
an) Py 3 N L e p \ 4 } il
A P T - o : 5 e _2i
- o' . — . |
g J } «
A ‘ 29) ! 1 b :

LeAmnine N g, jd

- A Hands-0On Guide to Building Web Applications in JavaScript®

Learning Node.js

A Hands-On Guide to
Building Web Applications in
JavaScript

Marc Wandschneider

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston e Indianapolis e San Francisco
New York ¢ Toronto ® Montreal ® London ® Munich e Paris ® Madrid
Cape Town e Sydney e Tokyo e Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2013936406
Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to

use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-91057-8
ISBN-10: 0-321-91057-5

Text printed in the United States on recycled paper at RR Donnelley & Sons,
Crawfordsville, Indiana.

First printing: June 2013

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taub
Marketing
Manager
Stephane Nakib

Managing Editor
Kristy Hart
Senior Project
Editor

Lori Lyons

Copy Editor
Chuck Hutchinson

Indexer

Tim Wright
Proofreader
Anne Goebel

Technical Reviewer
Bill Glover

Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith
Compositor
Nonie Ratcliff

Manufacturing
Buyer
Dan Uhrig

Learning Node.js

Addison-Wesley Learning Series

LEARNING |
OBJECTIVE-C 2.0

ands-on Gude 10 Objectivn € for Mac and 10f

o AHands
0
\
|
i1 ki

vvAddison-Wesley

Cocos?D LEARNING ANDROID
s it s GAME PROGRANMING
Firat

Visit informit.com/learningseries for a complete list of available publications.

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you've learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

#Addison-Wesley Informir | Safari’

ALWAYS LEARNING PEARSON

oo
Much love to Tina, for simply being there.

%%
0.0

Acknowledgments

I'd like to thank all the Marks at PHPTR (it’s a common name, it seems) who have helped me
make this book and other projects a reality. The copy editors have been brilliant and helpful.

A huge debt of gratitude is due to Bill Glover and Idriss Juhoor for their excellent technical and
style reviews.

And finally, much love to Tina, for simply being there.

About the Author

Marc Wandschneider co-founded Adylitica, a leading specialist in massively scalable web
and mobile app design and development. He travels the globe, consulting as a lead manager for
software projects and teams. A graduate of McGill University’s School of Computer Science, he
spent five years at Microsoft, developing and managing developers on the Visual Basic, Visual
J++, and .NET Windows Forms teams. As Contract Software Developer/Architect at SourceLabs,
he built the SWiK open source Wiki platform. He authored PHP and MySQL LiveLessons and Core
Web Application Development with PHP and MySQL.

Table of Contents

Introduction 1

Why Node.js? 1

The Web 1

New Technologies 2
What Exactly Is Node.js? 2
Who Is This Book For? 4
How to Use This Book 4
Download the Source Code 5

Part I: Learning to Walk 7

1 Getting Started 9
Installing Node.js 9
Installation on Windows 9
Installation on the Mac 12
Installation on Linux 14
Running Node.js and “Hello World!” 16
The Node Shell 16
Editing and Running JavaScript Files 17
Your First Web Server 17
Debugging Your Node.js Programs 19
Staying Up-to-Date and Finding Help 22
Summary 23

2 A Closer Look at JavaScript 25
Types 25

Type Basics 26

Constants 26

Numbers 27

Booleans 28

Strings 29

Objects 32

Arrays 34

viii

Contents

Type Comparisons and Conversions 38
Functions 39
Basics 39
Function Scope 42
Language Constructs 43
Classes, Prototypes, and Inheritance 44
Prototypes and Inheritance 45
Errors and Exceptions 47
Some Important Node.js Globals 47
global 47
console 48
process 48
Summary 48

Asynchronous Programming 49

The Old Way of Doing Things 49

The Node.js Way of Doing Things 50

Error Handling and Asynchronous Functions 53
The callback Function and Error Handling 54

Who Am 1? Maintaining a Sense of Identity 56

Being Polite—Learning to Give Up Control 58

Synchronous Function Calls 61

Summary 61

Part ll: Learning to Run 63
4 Writing Simple Applications 65

Your First JSON Server 65

Returning Some Data 67
Node Pattern: Asynchronous Loops 69
Learning to Juggle: Handling More Requests 72
More on the Request and Response Objects 78
Increased Flexibility: GET Params 79
Modifying Things: POST Data 83

Receiving JSON POST Data 84

Receiving Form POST Data 87
Summary 88

Contents ix

5 Modules 89

Writing Simple Modules 89
Modules and Objects 91

npm: The Node Package Manager 92

Consuming Modules 93
Searching for Modules 93
Module Caching 94
Cycles 95

Writing Modules 95
Creating Your Module 96
Developing with Your Module 101
Publishing Your Modules 102

A Module So Common It Should Be Built In 103
The Problem 104
The Solution 105

Summary 112

6 Expanding Your Web Server 113

Serving Static Content with Streams 113
Reading a File 114
Serving Static Files in a Web Server with Buffers 116
Serving Up More Than Just HTML 118

Assembling Content on the Client: Templates 120
The HTML Skeleton Page 123
Serving Static Content 124
Modifying Your URL Scheme 124
The JavaScript Loader/Bootstrapper 126
Templating with Mustache 127
Your Home Page Mustache Template 129
Putting It All Together 130

Summary 133

Part lll Writing Web Applications 135

7 Building Web Applications with Express 137
Installing Express 137
Hello World in Express 138

X

Contents

Routing and Layers in Express 139
Routing Basics 140
Updating Your Photo Album App for Routing 141
REST API Design and Modules 144
AP| Design 144
Modules 146
Additional Middleware Functionality 148
Usage 148
Configurations 149
Ordering of Middleware 150
Static File Handling 151
POST Data, Cookies, and Sessions 153
Better Browser Support for PUT and DELETE 155
Compressing Output 156
HTTP Basic Authentication 157
Error Handling 158
Summary 159

. 8 Databases |: NoSQL (MongoDB) 161
Setting Up MongoDB 161
Installing MongoDB 161
Using Mongo DB in Node.js 162
Structuring Your Data for MongoDB 163
It’s All JavaScript 163
Data Types 164
Understanding the Basic Operations 164
Connecting and Creating a Database 165
Creating Collections 165
Inserting Documents into Collections 166
Updating Document Values 167
Deleting Documents from Collections 168
Querying Collections 168
Updating Your Photo Albums App 171
Writing the Low-Level Operations 171
Modifying the API for the JSON Server 177
Updating Your Handlers 177
Adding Some New Pages to the Application 183

Contents Xi

Recapping the App Structure 187
Summary 188

9 Databases Il: SQL (MySQL) 189
Getting Ready 189
Installing MySQL 189
Adding the mysgl Module from npm 190
Creating a Schema for the Database 190
Basic Database Operations 191
Connecting 191
Adding Queries 192
Adding Authentication to the Application 192
Updating the APl to Support Users 193
Examining the Core User Data Operations 193
Updating the Express Application 197
Creating the User Handler 198
Creating the Login and Register Pages 201
Resource Pooling 204
Getting Started 204
Working with Connections 205
Authenticating the APl 205
Summary 209

Part IV Getting the Most Out of Node.js 211

10 Deployment and Development 213
Deployment 213
Level: Basic 214
Level: Ninja 216
Multiprocessor Deployment: Using a Proxy 218
Multiple Servers and Sessions 221
Virtual Hosting 224
Built-in Support 225
Proxy Server Support 227
Securing Your Projects with HTTPS/SSL 227
Generating Test Certificates 228
Built-in Support 228
Proxy Server Support 229

Xii Contents

Multiplatform Development 230
Locations and Configuration Files 230
Handling Path Differences 231

Summary 232

11 Command-Line Programming 233
Running Command-Line Scripts 233
UNIX and Mac 233
Windows 235
Scripts and Parameters 236
Working with Files Synchronously 237
Basic File APIs 237
Files and Stats 239
Listing Contents of Directories 240
Interacting with the User; stdin/stdout 240
Basic Buffered Input-Output 240
Unbuffered Input 241
The Readline Module 243
Working with Processes 247
Simple Process Creation 247
Advanced Process Creation with Spawn 248
Summary 251

12 Testing 253
Choosing a Framework 253
Installing Nodeunit 254
Writing Tests 254
Simple Functional Tests 255
Testing Asynchronous Functionality 258
RESTful APl Testing 258
Testing Secured Resources 261
Summary 262

Index 263

Introduction

Welcome to Learning Node.js. Node.js is an exciting new platform for writing network and web
applications that has created a lot of buzz over the past couple of years and rapidly gathered a
sizeable following in the developer community. In this book, I teach you more about it, why
it is special, and get you up and writing Node.js programs in short order. You'll soon find that
people are rather flexible with the name of Node.js and will refer to it frequently as just Node
or even “node.” I certainly do a lot of that in this book as well.

Why Node.js?

Node.js has arisen for a couple of primary reasons, which I explain next.

The Web

In the past, writing web applications was a pretty standard process. You have one or more
servers on your machine that listens on a port (for example, 80 for HTTP), and when a request
is received, it forks a new process or a thread to begin processing and responding to the query.
This work frequently involves communicating with external services, such as a database,
memory cache, external computing server, or even just the file system. When all this work is
finally finished, the thread or process is returned to the pool of “available” servers, and more
requests can be handled.

It is a reasonably linear process, easy to understand, and straightforward to code. There are,
however, a couple of disadvantages that continue to plague the model:

1. Each of these threads or processes carries some overhead with it. On some machines,
PHP + Apache can take up as much as 10-15MB per process. Even in environments
where a large server runs constantly and forks threads to process the requests, each of
these carries some overhead to create a new stack and execution environment, and you
frequently run into the limits of the server’s available memory.

2. In most common usage scenarios where a web server communicates with a database,
caching server, external server, or file system, it spends most of its time sitting around
doing nothing and waits for these services to finish and return their responses. While it is
sitting there doing nothing, this thread is effectively “blocked” from doing anything else.
The resources it consumes and the process or thread in which it runs are entirely frozen
waiting for those responses to come back.

2

Introduction

Only after the external component has finally sent back its response will that process
or thread be free to finish processing, send a response to the client, and then reset to
prepare for another incoming request.

So, although it’s pretty easy to understand and work with, you do have a model that can be
quite inefficient if your scripts spend most of their time waiting for database servers to finish
running a query—an extremely common scenario for a lot of modern web applications.

Many solutions to this problem have been developed and are in common use. You can buy
ever bigger and more powerful web servers with more memory. You can replace more powerful
and feature-rich HTTP servers such as Apache with smaller, lightweight ones such as lighttpd

or nginx. You can build stripped-down or reduced versions of your favorite web programing
language such as PHP or Python. (Indeed, Facebook has taken this one step further and built a
system that converts PHP to native C++ code for maximal speed and optimal size.) Or you can
throw more servers at the problem to increase the number of simultaneous connections you
can accommodate.

New Technologies

Although the web developers of the world have continued their eternal struggle against server
resources and the limits on the number of requests they can process, a few other interesting
things have happened in the meantime.

JavaScript, that old (meaning 1995 or so) language that came to be most well known (and
frequently reviled) for writing client-side scripts in the web browser, has been growing in
popularity again. Modern versions of web browsers are cleaning up their implementations of
it and adding in new features to make it more powerful and less quirky. With the advent of
client libraries for these browsers, such as jQuery, script.aculo.us, or Prototype, programming
in JavaScript has become fun and productive. Unwieldy APIs have been cleaned up, and fun,
dynamic effects have been added.

At the same time, a new generation of browser competition has erupted, with Google’s
Chrome, Mozilla’s Firefox, Apple’s Safari, and Microsoft's Internet Explorer all vying for

the crown of browser king. As part of this, all these companies are investing heavily in the
JavaScript portion of these systems as modern web applications continue to grow ever-more
dynamic and script-based. In particular, Google Chrome’s V8 JavaScript runtime is particularly
fast and also open-sourced for use by anybody.

With all these things in place, the opportunity arose for somebody to come along with a new
approach to network (web) application development. Thus, the birth of Node.js.

What Exactly Is Node.js?

In 2009, a fellow named Ryan Dahl was working for a company called Joyent, a cloud and
virtualization services company in California. He was looking to develop push capabilities for

