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Introduction

Welcome to Learning Node.js. Node.js is an exciting new platform for writing network and web
applications that has created a lot of buzz over the past couple of years and rapidly gathered a
sizeable following in the developer community. In this book, I teach you more about it, why
it is special, and get you up and writing Node.js programs in short order. You'll soon find that
people are rather flexible with the name of Node.js and will refer to it frequently as just Node
or even “node.” I certainly do a lot of that in this book as well.

Why Node.js?

Node.js has arisen for a couple of primary reasons, which I explain next.

The Web

In the past, writing web applications was a pretty standard process. You have one or more
servers on your machine that listens on a port (for example, 80 for HTTP), and when a request
is received, it forks a new process or a thread to begin processing and responding to the query.
This work frequently involves communicating with external services, such as a database,
memory cache, external computing server, or even just the file system. When all this work is
finally finished, the thread or process is returned to the pool of “available” servers, and more
requests can be handled.

It is a reasonably linear process, easy to understand, and straightforward to code. There are,
however, a couple of disadvantages that continue to plague the model:

1. Each of these threads or processes carries some overhead with it. On some machines,
PHP + Apache can take up as much as 10-15MB per process. Even in environments
where a large server runs constantly and forks threads to process the requests, each of
these carries some overhead to create a new stack and execution environment, and you
frequently run into the limits of the server’s available memory.

2. In most common usage scenarios where a web server communicates with a database,
caching server, external server, or file system, it spends most of its time sitting around
doing nothing and waits for these services to finish and return their responses. While it is
sitting there doing nothing, this thread is effectively “blocked” from doing anything else.
The resources it consumes and the process or thread in which it runs are entirely frozen
waiting for those responses to come back.
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Only after the external component has finally sent back its response will that process
or thread be free to finish processing, send a response to the client, and then reset to
prepare for another incoming request.

So, although it’s pretty easy to understand and work with, you do have a model that can be
quite inefficient if your scripts spend most of their time waiting for database servers to finish
running a query—an extremely common scenario for a lot of modern web applications.

Many solutions to this problem have been developed and are in common use. You can buy
ever bigger and more powerful web servers with more memory. You can replace more powerful
and feature-rich HTTP servers such as Apache with smaller, lightweight ones such as lighttpd

or nginx. You can build stripped-down or reduced versions of your favorite web programing
language such as PHP or Python. (Indeed, Facebook has taken this one step further and built a
system that converts PHP to native C++ code for maximal speed and optimal size.) Or you can
throw more servers at the problem to increase the number of simultaneous connections you
can accommodate.

New Technologies

Although the web developers of the world have continued their eternal struggle against server
resources and the limits on the number of requests they can process, a few other interesting
things have happened in the meantime.

JavaScript, that old (meaning 1995 or so) language that came to be most well known (and
frequently reviled) for writing client-side scripts in the web browser, has been growing in
popularity again. Modern versions of web browsers are cleaning up their implementations of
it and adding in new features to make it more powerful and less quirky. With the advent of
client libraries for these browsers, such as jQuery, script.aculo.us, or Prototype, programming
in JavaScript has become fun and productive. Unwieldy APIs have been cleaned up, and fun,
dynamic effects have been added.

At the same time, a new generation of browser competition has erupted, with Google’s
Chrome, Mozilla’s Firefox, Apple’s Safari, and Microsoft's Internet Explorer all vying for

the crown of browser king. As part of this, all these companies are investing heavily in the
JavaScript portion of these systems as modern web applications continue to grow ever-more
dynamic and script-based. In particular, Google Chrome’s V8 JavaScript runtime is particularly
fast and also open-sourced for use by anybody.

With all these things in place, the opportunity arose for somebody to come along with a new
approach to network (web) application development. Thus, the birth of Node.js.

What Exactly Is Node.js?

In 2009, a fellow named Ryan Dahl was working for a company called Joyent, a cloud and
virtualization services company in California. He was looking to develop push capabilities for



