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PREFACE

This book presents in a comprehensive manner some salient theoretical
aspects of multiobjective optimization. The authors had been involved in
the special research project Environmental Science, sponsored by the
Education Ministry of Japan, for more than a decade since 1970. Through
the research activities, we became aware that an important thing is not
merely to eliminate pollutants after they are discharged, but how to create
a good environment from a holistic viewpoint. What, then, is a good
environment? There are many factors: physical, chemical, biological,
economic, social, and so on. In addition, to make the matter more difficult,
there appear to be many conflicting values.

System scientific methodology seems effective for treating such a multi-
plicity of values. Its main concern is how to trade off these values. One of
the major approaches is multiobjective optimization. Another is multi-
attribute utility analysis. The importance of these research themes has
been widely recognized in theory and practice. Above all, the workshops at
South Carolina in 1972 and at IIASA in 1975 have provided remarkable
incentives to this field of research. Since then, much active research has
been observed all over the world.

Although a number of books in this field have been published in recent
years, they focus primarily on methodology. In spite of their importance,
however, theoretical aspects of multiobjective optimization have never
been dealt with in a unified way.

In Chapter 1 (Introduction), fundamental notions in multiobjective
decision making and its historical background are briefly explained.
Throughout this chapter, readers can grasp the purpose and scope of this
volume.

Chapters 2-6 are the core of the book and are concerned with the mathe-
matical theories in multiobjective optimization of existence, necessary and
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X PREFACE

sufficient conditions of efficient solutions, characterization of efficient
solutions, stability, and duality. Some of them are still developing, but we
have tried to describe them in a unified way as much as possible.

Chapter 7 treats methodology including utility/value theory, stochastic
dominance, and multiobjective programming methods. We emphasized
critical points of these methods rather than a mere introduction. We hope
that this approach will have a positive impact on future development of
these areas.

The intended readers of this book are senior undergraduate students,
graduate students, and specialists of decision making theory and mathe-
matical programming, whose research fields are applied mathematics,
electrical engineering, mechanical engineering, control engineering, econo-
mics, management sciences, operations research, and systems science. The
book is self-contained so that it might be available either for reference and
self-study or for use as a classroom text; only an elementary knowledge of
linear algebra and mathematical programming is assumed.

Finally, we would like to note that we were motivated to write this book
by a recommendation of the late Richard Bellman.
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1 INTRODUCTION

Every day we encounter various kinds of decision making problems as
managers, designers, administrative officers, mere individuals, and so on. In
these problems, the final decision is usually made through several steps, even
though they sometimes might not be perceived explicitly. Figure 1.1 shows a
conceptual model of the decision making process. It implies that the final
decision is made through three major models, the structure model, the impact
model, and the evaluation model.

By structure modeling, we mean constructing a model in order to know the
structure of the problem, what the problem is, which factors comprise the
problem, how they interrelate, and so on. Through the process, the objective
of the problem and alternatives to perform it are specified. Hereafter, we shall
use the notation @ for the objective and X for the set of alternatives, which is
supposed to be a subset of an n-dimensional vector space. If we positively
know a consequence caused by an alternative, the decision making is said to
be under certainty; whereas if we cannot know a sure result because of some
uncertain factor(s), the decision making is said to be under uncertainty.
Furthermore, if we objectively or subjectively know the probability distri-
bution of the possible consequences caused by an alternative, the decision
making is said to be under risk. Even though the final objective might be a
single entity, we encounter, in general, many subobjectives @; on the way to
the final objective. In this book, we shall consider decision making problems
with multiple objectives. Interpretive structural modeling (ISM) (Warfield
[WS5]) can be applied effectively in order to obtain a hierarchical structure of
the objectives.

In order to solve our decision making problem by some systems—analytical
methods, we usually require that degrees of objectives be represented in
numerical terms, which may be of multiple kinds even for one objective. In
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2 1 INTRODUCTION

Problem Structure Impact Evaluation Decision
Model Model Model =

Fig. 1.1. Conceptual model of the decision making process.

order to exclude subjective value judgment at this stage, we restrict these
numerical terms to physical measures (for example, money, weight, length,
and time). As such a performance index, or criterion, for the objective (/;, an
objective function f:X — R' is introduced, where R' denotes one-
dimensional Euclidean space. The value f{(x) indicates how much impact is
given on the objective ¢; by performing an alternative x. Impact modeling is
performed to identify these objective functions from various viewpoints such
as physical, chemical, biological, social, economic, and so on. For con-
venience of mathematical treatment, we assume in this book that a smaller
value for each objective function is preferred to a larger one. Now we can
formulate our decision making problems as a multiobjective optimization
problem:

(P) Minimize S(x) = (f1(x), f2(x), . . ., f(x)) over xe X.

This kind of problem is also called a vector optimization. In some cases, some
of the objective functions are required to be maintained under given levels
prior to minimizing other objective functions. Denoting these objective
functions by g/(x), we require that

g <0,  j=1.0m

which, for convenience, is also supposed to represent some other technical
constraints. Such a function g(x) is generally called a constraint function in
this book. According to the situation, we will consider either the problem (P)
itself or (P) accompanied by the constraint g{ix) <0 (j=1,...,m). Of
course, an equality constraint h(x) = 0 can be embedded within two
inequalities 7 (x) <0 and —hy(x) <0, and, hence, it does not appear
explicitly in this book.

Unlike traditional mathematical programming with a single objective
function, an optimal solution in the sense of one that minimizes all the
objective functions simultaneously does not necessarily exist in multiobjec-
tive optimization problems, and, hence, we are troubled with conflicts among
objectives in decision making problems with multiple objectives. The final
decision should be made by taking the total balance of objectives into
account. Therefore, a new problem of value judgment called value trade-off
arises. Evaluation modeling treats this problem that is peculiar to decision
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making with multiple objectives. Here we assume a decision maker who is
responsible for the final decision. In some cases, there may be many decision
makers, for which cases the decision making problems are called group
decision problems. We will consider cases with a single decision maker in this
book. The decision maker’s value is usually represented by saying whether or
not an alternative x is preferred to another alternative x’, or equivalently
whether or not f(x) is preferred to f(x’). In other words, the decision maker’s
value is represented by some binary relation defined over X or f(X). Since
such a binary relation representing the decision maker’s preference usually
becomes an order, it is called a preference order. In this book, the decision
maker’s preference order is supposed to be defined on the so-called criteria
space Y, which includes the set f(X). Several kinds of preference orders will be
possible, sometimes, the decision maker cannot judge whether or not f(x) is
preferred to f(x’). Roughly speaking, such an order that admits incom-
parability for a pair of objects is called a partial order, whereas the order
requiring the comparability for every pair of objects is called a weak order (or
total order). In practice, we often observe a partial order for the decision
maker’s preference. Unfortunately, however, an optimal solution in the sense
of one that is most preferred with respect to the order, whence the notion of
optimality does not necessarily exist for partial orders. Instead of strict
optimality, we introduce in multiobjective optimization the notion of
efficiency. A vector f(x) is said to be efficient if there is no f(x) (x € X)
preferred to f(x) with respect to the preference order. The final decision is
usually made among the set of efficient solutions.

One approach to evaluation modeling is to find a scalar-valued function
u(fy,-...f,) representing the decision maker’s preference, which is called a
preference function in this book. A preference function in decision making
under risk is called a utility function, whereas the one in decision making
under certainty is called a value function. The theory regarding existence,
uniqueness, and practical representation of such a utility or value function is
called the utility and value theory. Once we obtain such a preference function,
our problem reduces to the traditional mathematical programming:

Maximize #(f(x) . . - 1(%)) over x € X.

Another popular approach is the interactive programming that performs
the solution search and evaluation modeling. In this approach, the solution is
searched without identifying the preference function by eliciting iteratively
some local information on the decision maker’s preference.

Kuhn and Tucker [K10] first gave some interesting results concerning
multiobjective optimization in 1951. Since then, research in this field has
made remarkable progresss both theoretically and practically. Some of the
earliest attempts to obtain conditions for efficiency were carried out by Kuhn
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and Tucker [K10], and Arrow et al. [AS]. Their research has been inherited
by Da Cunha and Polak [D1], Neustadt [N14], Ritter [R4-R6], Smale [S10,
S11], Aubin [A7], and others. After the 1970s, practical methodology such as
utility and value analysis and interactive programming methods have been
actively researched as tools for supporting decision making, and many books
and conference proceedings on this topic have been published. (See, for
example, Lee [L1], Cochrane and Zeleny [C12], Keeney and Raiffa [K6],
Leitmann and Marzollo [L3], Leitmann [L2], Wilhelm [W15], Zeleny [Z4—
Z6], Thiriez and Zionts [T14], Zionts [Z7], Starr and Zeleny [S13],
Nijkamp and Delft [N18], Cohon [C13], Hwang and Masud [H17],
Salkuvadze [S3], Fandel and Gal [F2], Rietveld [R3], Hwang and Yoon
[H18], Morse [M5], Goicoeche et al. [G8], Hansen [H3], Chankong and
Haimes [C6], and Grauer and Wierzbicki [G10].)

On the other hand, duality and stability, which play an important role
in traditional mathematical programming, have been extended to multi-
objective optimization since the late 1970s. Isermann [I5-17] developed
multiobjective duality in the linear case, while the results for nonlinear cases
have been given by Schonfeld [S6], Rosinger [R10], Guglielmo [G12],
Tanino and Sawaragi [T9, T11], Mazzoleni [M3], Bitran [B13], Brumelle
[B21], Corley [C16], Jahn [J1], Kawasaki [K2, K37, Luc [L10], Nakayama
[NS5], and others. Stability for multiobjective optimization has been de-
veloped by Naccache [N2] and Tanino and Sawaragi [T10].

This book will be mainly concerned with some of the theoretical aspects in
multiobjective optimization; in particular, we will focus on existence, neces-
sary/sufficient conditions, stability, Lagrange duality, and conjugate duality
for efficient solutions. In addition, some methodology such as utility and
value theory and interactive programming methods will also be discussed.

Chapter 2 is devoted to some mathematical preliminaries. The first section
gives a brief review of the elements of convex analysis that play an important
role not only in traditional mathematical programming but also in multi-
objective optimization. The second section describes point-to-set maps that
play a very important role in the theory of multiobjective optimization, since
the efficient solutions usually constitute a set. The concepts of continuity and
convexity of point-to-set maps are introduced. These concepts are fundamen-
tal for existence and necessary/sufficient conditions for efficient solutions.
The third section is concerned with a brief explanation of preference order
and domination structures.

Chapter 3 begins with the introduction of several possible concepts for
solutions in multiobjective optimization. Above all, efficient solutions will be
the subject of primary consideration in subsequent theories. Next, some
properties of efficient solutions, such as existence, external stability,
connectedness, and necessary/sufficient conditions, will be discussed.



