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PREFACE

Volume 13 involves the chapters describing the mechanical properties of
lipid bilayer membranes and protein—lipid interactions, lipid and membrane
dynamics in biological tissues, membrane skeleton reorganization, photo-
voltaic solar energy conversion in biomembranes, multiparametric fluores-
cence approach in biomembrane experimental studies, and interactions
between osteoblasts and titanium surface of implants. I would like to express
my gratitude to all authors contributing their chapters, that is, to Profs. and/
or Drs. S. Yoshida, K. Koike, T. Hianik, D. Kabaso, R. Shlomovitz, T.
Auth, V. L. Lew, N. S. Gov, F. T. Hong, A. A. Heikal, E. Gongadze, $.
Perutkovi, V. Kralj-Igli¢, and U. van Rienen. I also very much appreciate
the continuous support of Ben Davie from Elsevier Office in London
together with its coworkers from Elsevier’'s Chennai Office in India, Paul
Prasad Chandramohan, Sunita Sundararajan, and Vijayaraj Purush. I would
like to use this occasion to express my gratitude to the following members of
the Editorial Board of APLBL: Prof. Sylvio May, Prof. P. B. Sunil Kumar,
Prof. Nir S. Gov, Prof. Tibor Hianik, and Dr. Michael Rappolt. Special
thanks to the previous editor Prof. Angelica Leitmannova Liu.

Ales Igli¢
Editor
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Abstract

Functions of cell bilayer membranes are closely linked to dynamics and behavior
of network of membrane components including lipids, proteins, and glycans. It is
important to investigate the role of membrane components in the membrane
functions without damage of the network of components. This is the reason why
noninvasive and nondestructive analyses are so important for the study of the
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intact membranes and tissues. Vibrational spectroscopies including near- and
mid-infrared absorption and resonance Raman scattering spectroscopies are
useful for these purposes. In this chapter, we summarize the application of
infrared spectroscopy to studies of lipids and bilayer membrane dynamics in
biological tissues, and to the research for diagnosis of human diseases.

- ABBREVIATIONS

18-MEA 18-methyl-eicosanoic acid

AGE:s advanced glycation end products

ATR attenuated total reflectance

CERs ceramides

CHOL cholesterol

DEPE 1,2-dielaidoyl-sn-glycero-3-phospho-ethanolamine
DHA docosahexaenoic acid

DMPA 1,2-dimyristoyl-sn-glycero-3-phosphate sodium salt
DPPC dipalmitoylphosphatidylcholine

ESG esterified sterylglucoside

ESI-MS electrospray ionization-mass spectrometry

FFA free fatty acid

FTIR Fourier-transform infrared

GAGs glycosaminoglycans

GalCer galactocerebroside

GlcNAc N-acetylglucosamine

HDL high-density lipoprotein

IR infrared

LDL low-density lipoprotein

MALDI-TOF-MS  matrix-assisted laser desorption ionization
time-of-flight mass spectrometry

NMF natural moisturizer factor
NMR nuclear magnetic resonance
PCA principal component analysis
PLS partial least square

POPC palmitoleic phosphatidylcholine
SC stratum corneum

-1, INTRODUCTION

Cell membrane and tissue lipid dynamics are playing important roles
in the life of all organisms on the earth. Especially, the cell membranes with
phospholipid bilayer have mainly two functions (1) clear separation of the
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inner cell space from the outer world and (2) mediation of signal transduc-
tion and communications between the inner and outer spaces. These
important functions of cell membranes are based on various biomolecular
components, such as lipids (including fatty acids), proteins (enzymes, recep-
tors, transporters, channels, and cytoskeletons), and glycans, and their
interactions.

Functions of cell membranes are closely linked with dynamics and
behavior of network of membrane components, such as lipids, proteins,
and glycans with the aid of minerals and other nutrients. Thus, it is
important to investigate the role of membrane components in the mem-
brane functions without -disruption of membrane integrity and without
damage of the network of components. This is the reason why noninvasive
and nondestructive analyses are so important for the study of membrane
components in the intact membranes.

For noninvasive and nondestructive analyses of membrane systems,
vibrational spectroscopies including near- and mid-infrared absorption
and resonance Raman scattering spectroscopies are useful for these pur-
poses. Vibrational spectroscopy can reveal the characteristics and interaction
with the environment of biomolecules. Basically, the mid-infrared spectros-
copy is based on the net changes of dipole moment of the molecules (“IR-
active”), whereas the Raman spectroscopy is based on the change of electric
polarizability of the molecules (“Raman-active”), and thus these spectro-
scopies are complementary techniques for studies in chemistry.

The mid-infrared absorption and Raman scattering spectroscopies are
frequently used to study the interaction between lipids and proteins or
glycans in the cell membrane, and this is due to the evidence that the energy
level of hydrogen bonding or some interactions is comparable to the
infrared energy level, and the interaction change between functional groups
of membrane biomolecules (e.g., receptors, channels, glycoproteins, and
glycolipids) and the surrounding water or lipid or protein molecules may be
detectable in the infrared region.

Vibrational spectroscopy can reveal not only the characteristics of spe-
cific functional group, but also the mixture of many functional groups. As a
matter of fact, the change of membrane dynamics may be in part the result
of change of biomolecular networks in the membrane. This is because the
application of statistical multivariate analysis or chemometrics to vibrational
spectroscopy is useful and important for the noninvasive analyses of cell
membranes, food staffs, and human tissues.

In the multivariate analysis or chemometrics for vibrational spectros-
copy, the principal component analysis (PCA) and partial least square (PLS)
regression analysis methods are frequently used for classification or catego-
rization of phenomena, such as membrane dysfunction, or predication
of change of factors which are, for example, some disease-related
lipids and fatty acids. These statistical methods may provide vibrational
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spectroscopy—the chance to supersede the diagnosis of diseases with inva-
sive clinical tests and destructive tests of food staffs.

The vibrational spectroscopy has been widely applied to the diagnostic
analysis of diseases and nondestructive analysis of food staffs; however, at
present there have been few vibrational spectroscopic techniques used as
golden standard methods for diagnostic analyses. Usually biochemical ana-
lyses of blood or other body fluids have been used for the diagnosis as
standard methods, and only one or a few specific factors could be measured
in one shot of detection. For example, total cholesterol (CHOL), LDL,
HDL, and triglycerides were mainly measured for diagnosis of hyperlipid-
emia which would be linked, in some cases, to complex metabolic diseases.
Some complex diseases such as diabetic diseases and atherosclerosis may
have complex pathogenic mechanisms with many onset factors and thus
many biomarkers.

To realize those complex diseases and diagnosis, the technique which
would detect many factors in a short time noninvasively by one shot of
measurement would be very useful, and for this purpose the vibrational
spectroscopy—especially mid-infrared spectroscopy—would be suitable
because it can detect the change of properties of cell bilayer membranes
including proteins, lipids, and glycans simultaneously, and actually the near-
and mid-infrared spectroscopy as well as Raman scattering spectroscopy
may have a great potential in the clinical diagnostics field.

In this chapter, we summarize the advances of infrared spectroscopic
techniques in the study of cell membranes and lipids and their interactions
with other biomolecules in relation to the diagnosis of human diseases.

2. HISTORICAL VIEW OF VIBRATIONAL SPECTROSCOPIC
STUDIES ON LIPIDS AND MEMBRANE DYNAMICS IN
BioLOGICAL TISSUES

Application of vibrational spectroscopy, especially mid-infrared spec-
troscopy, to the studies of cell membrane and lipids has a long history and
has provided a lot of data concerning to the study of membrane and lipid
dynamics in human tissues.

2.1. Membrane Fluidity

Infrared spectroscopy could reveal the fluidity change of the cell membranes
and liposomes with measuring the methylene CH stretching mode of the
membrane fatty acyl chains [1,2]. Membrane fluidity could be measured also
by other methods, such as using electron spin resonance and fluorescence
probes [3], and the viscosity change corresponding to the capability of
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moving of fatty acyl chains in the membrane was detected as a kinetic
parameter of microenvironment of the probes. On the other hand, the
measurement of membrane fluidity by infrared spectroscopy may show the
extent of packing of membrane acyl chains, or in another words “softness of
the membrane” which is a static parameter of macroenvironment.

Actually, the change of membrane fluidity may be measured by the
change of infrared absorption peak position for methylene CH symmetric
stretching mode at around 2850 cm " [1,2] as well as NMR measurement
(4]. In the fluidity measurement, the peak shift to lower wave number
direction indicated that the membrane became harder or ordered in the
lipid network structure, whereas the shift to higher wave number direction
indicated softer or disordered [5]. The infrared spectroscopic analysis could
be used for elucidation of phase behavior of long-chain phospholipid
membranes [2].

In lipid bilayer membranes, acyl chains in the lipids are interacted with
each other by the van der Waals or London forces. When the interaction
among methylenes was increased with the increase of packing of the
membrane acyl chains which were attracted with each other by London
forces, methylene CH bond force constant might be decreased. This would
shift the CH symmetric stretching mode-originated infrared absorption
peak to the lower wave number (energy) direction, for example, a shift
from 2853 to 2852 cm ™ ', indicating hardening of the membrane and
usually observed when the temperature was decreased from 37 to 10 °C
for pig brain microsomal membranes (unpublished result).

In another case, the Fourier-transform infrared (FTIR) spectroscopic
analysis of lipid O=P=0, C=0, and C-H vibrational bands of POPC/
CHOL (palmitoleic phosphatidylcholine/cholesterol mixture) liposomes
revealed an increase in the conformational order of the acyl chains at or
close to the predicted critical cholesterol molar fractions [3]. Here, the shift
of methylene infrared absorption peak was observed from 2851.2 to
2850.7 cm™~ ' when the fraction of cholesterol was increased from 0% to
40%. This indicated that the insertion of cholesterol to POPC model
membrane contributed to the increase of packing of membrane acyl chains.

For measurement of membrane fluidity in the biological tissues such as
artery, it would be difficult to use probe methods (using fluorescence
anisotropy measurement and electron spin resonance spectroscopy) because
the probe methods would require the insertion of external probe to the
tissue membranes and the suitable insertion of probe might be practically
impossible to the arterial membrane. Infrared spectroscopy provides a
technique that does not require the insertion of probes, and this is especially
advantageous for measurement of biological tissues.

Actually, the application of FTIR for measurement of mouse pulmonary
artery was reported [6] and the change of conformational disorder (fluidity)
in the artery membrane lipids could be detected. In this case, the arterial
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tissue was sandwiched by CaF, disks and the transmission FTIR absorption
spectrum could be measured. In this report, the average conformational
disorder in membrane lipids in the pulmonary artery in situ was increased by
the treatment of monocrotaline which was a toxic alkaloid and caused early
pulmonary endothelial injury with gradual development of pulmonary
hypertension. Moreover, the membrane fluidity of carotid tissue of sponta-
neously hypertensive rat could also be measured in situ [7], and the mem-
brane fluidity was increased in the hypertensive rat carotid subjected to
anoxia, but not in the control rat. In the carotid or pulmonary arterial
tissues, the increase of membrane conformational disorder would be linked
to vulnerability of the tissue membrane.

2.2. Hydration of Membrane

The state of hydration of membrane surface may affect the hydrolytic
activity in or on the surface of membrane, and the hydration may be closely
related to the presence of glycans on the membrane, especially glycosylated
lipids and proteins. Actually, it was reported that the interfacial properties of
cell membranes were important and phospholipase A, activity was influ-
enced by hydration (or in another word, water activity) of the membrane
surface [8—10], and thus the inflammation was affected.

Hydration state around carboxyl and phosphate groups may be affected by
the presence of polyhydroxy compounds (such as glycans) or by changing the
chemical groups esterified to the phosphates, mainly choline, ethanolamine, or
glycerol. Thus, surface membrane properties, such as the dipole potential and
the surface pressure, are modulated by the water at the interphase region by
changing the structure of the membrane components [10-13].

The hydration or dehydration of membrane surface could be measured
by FTIR using the absorption of hydroxy (~OH) and carboxylate (-COO-)
groups which would be changed by the change of hydrogen bonding with
water around the residues on the membrane surface. It was reported previ-
ously [8] that nondestructive FTIR analysis could detect the modification of
rat brain microsomal membranes and these modifications of brain micro-
somal membranes were dependent on the dietary fatty acids and learning
behavior. In this report [8], FTIR spectral differences for brain microsomes
were observed mainly in the absorption bands of fatty acyl ester at around
1730 cm™ ' (sn-2 posmon) phosphate ester and oligosaccharides in the range
0f1050~1100 cm ™~ '. The infrared band of fatty acyl ester at the sn-2 position
in the mlcrosomal membrane shifted to a higher wave number position
(1731 cm™ ') in the perilla oil-diet group (a-linolenic acid-rich) than that in
the safflower oil group (a-linolenic acid-deficient) at 1727 cm™ ' after the
learning behavior, suggesting a difference between both groups in hydrogen
bonding of the fatty acyl ester with water. Without learning behavior,
both groups showed similar ester absorption at sn-2 position (1729



