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Preface

This book summarizes the recent progress in the major methodologies of carbonyl
olefination, which is one of the most fundamental transformations in organic
synthesis. Carbonyl olefination has been extensively studied since Professor Georg
Wittig discovered in 1953 the reaction of phosphonium ylides with carbonyl com-
pounds, which has become known as the Wittig reaction. Since then, a variety of
reagents have been developed for this transformation by a number of chemists.
These reagents enable us to transform various carbonyl functions into carbon-
carbon double bonds with different chemo- and stereoselectivities and are utilized
in a variety of organic syntheses.

The mechanisms of these reactions bear marked similarities, in spite of the
differences in their reactivities and selectivities. Thus, in certain cases, a four-
membered intermediate similar to the 1,2-oxaphosphetane intermediate in the
Wittig reaction appears in the Peterson reaction as a pentacoordinate 1,2-
oxasiletanide. Reactions of transition metal carbene complexes with carbonyl com-
pounds also proceed through the formation of a four-membered oxametallacycle,
which was recently found to be an intermediate of some McMurry reactions. Car-
bonyl olefination utilizing dimetallic species of zinc or chromium is somewhat
similar to the Julia reaction in that they both involve the process of f-elimination.

In this book, an effort has been made to provide comprehensive yet concise
commentaries on the mechanisms of each reaction, as well as on their synthetic
applications. These provide an accurate prescription for their use and should be
useful for the development of a broader perspective on carbonyl olefination. The
final chapter is concerned with asymmetric carbonyl olefination, which is one of
the frontiers of organic synthesis. As this subject exemplifies, the established
methodologies are not necessarily perfect and there still remain many problems to
be solved in the field of carbonyl olefination. It is hoped that this book will be of
wide use to all chemists engaged in organic synthesis, both in industrial labo-
ratories and in academic institutions.

I would like to thank the authors of the individual chapters for their excellent
contributions. This volume was only possible with the cooperation of the authors,
who are experts in each field. Finally, I express my sincere gratitude to my wife,
Yukiko, whose continuous encouragement was essential to the editing of this book.

Takeshi Takeda
Tokyo, 2003
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1
The Wittig Reaction

Michael Edmonds and Andrew Abell

1.1
Introduction

The reaction of a phosphorus ylide with an aldehyde or ketone, as first described in
1953 by Wittig and Geissler [1] (see Scheme 1.1), is probably the most widely rec-
ognized method for carbonyl olefination.

® . ® O
Phop—CHy 12 P | Phgp—GH, == PhsP=CH
Ph
o<
Ph

H__ Ph Phaf? . PhP
PhaPO  + > o) Ph [©Ye) Ph
H Ph Ph Ph
oxaphosphetane betaine
Scheme 1.1.  The Wittig reaction.

This so-called Wittig reaction has a number of advantages over other olefination
methods; in particular, it occurs with total positional selectivity (that is, an alkene
always directly replaces a carbonyl group). By comparison, a number of other car-
bonyl olefination reactions often occur with double-bond rearrangement. In addi-
tion, the factors that influence E- and Z-stereoselectivity are well understood and
can be readily controlled through careful selection of the phosphorus reagent and
reaction conditions. A wide variety of phosphorus reagents are known to partici-
pate in Wittig reactions and the exact nature of these species is commonly used to
divide the Wittig reaction into three main groups, namely the “classic” Wittig
reaction of phosphonium ylides, the Horner-Wadsworth—-Emmons reaction of
phosphonate anions, and the Horner-Wittig reaction of phosphine oxide anions.
Each of these reaction types has its own distinct advantages and limitations, and
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2

1 The Wittig Reaction

these must be taken into account when selecting the appropriate method for a de-
sired synthesis.

1.2
The “Classic” Wittig Reaction [1-4]

The original work of Wittig and Geissler [1], as depicted in Scheme 1.1, provides a
good example of a classic Wittig reaction in which a phosphonium ylide reacts
with an aldehyde or ketone to afford the corresponding alkene and phosphine
oxide. This reaction is very general and provides a convenient method for the
preparation of a range of alkenes with good stereocontrol. The starting phospho-
nium ylides are themselves readily generated by the addition of a suitable base to
the corresponding phosphonium salt (refer to Section 1.2.3).

1.2
Mechanism and Stereoselectivity

The mechanism of the Wittig reaction has long been considered to involve two in-
termediate species, a diionic betaine and an oxaphosphetane, as shown in Scheme
1.1. However, there has been much debate as to which of these two species plays
the most important mechanistic role and also as to how each influences the ste-
reochemical outcome under different reaction conditions. For many years, it was
generally accepted that the betaine is the more important intermediate [5, 6];
however, recent low temperature *'P NMR studies suggest that this may not be the
case [7, 8]. This supposition is further supported by recent calculations that reveal
that oxaphosphetanes are of lower energy than the corresponding betaines [9]. As
such, the currently accepted mechanism for the Wittig reaction is as shown in
Scheme 1.2 [4]. For a more detailed account of the evolution of the Wittig mecha-
nism, the reader is referred to the excellent reviews by Vedejs and co-workers
[4, 10].

The stereoselectivity of the Wittig reaction is directly linked to this mechanism.
In particular, the reaction of a carbonyl compound with an ylide produces both the

R R2
. PR3
- 0 |
3

H™ 4 / R' R!
cis-oxaphosphetane (2)-alkene
+
R1
=0 \ R R2
o
R! R
trans-oxaphosphetane (E)-alkene

Scheme 1.2. The mechanism of the Wittig reaction.



