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Preface

The term transformation group refers to the following properties of a collection G
of invertible transformations ¥ = T'(x) of certain objects x :

1°. G contains the identity transformation /.
2°. G contains the inverse 7' of any T € G.
3°. G contains the product 7577 of any 71,7> € G.

Note that the identity transformation 7 is defined by the equation /(x) = x. The
product 7>7; is defined as a successive action of 77 and 73, i.e.

() (x) = T(Ti (x))-

Finally, the inverse 7! is defined by the equations T~'T =TT ! =I.

The group property of G is closely connected with the invariance of sets of the
objects x under the transformations 7 € G. We can formulate the statement in the
following form.

Proposition. Let S be a set of objects x and G be the collection of all invertible
transformations 7 defined on S and mapping any x € Sinto 7 (x) =% € S. Then G is
a group.

Proof. Let us verify that the group properties 1° — 3° hold. The validity of the prop-
erty 1° is obvious because x € S implies /(x) = x € S. Hence, I € G. Furthermore,
T(x) =% € S implies that 7~!(¥) = x € S, and hence T~! € G, i.e. the property 2° is
also satisfied. Finally, to verify the property 3°, we note that if 77,75 € G, then the
action 7> (71 (x)) is defined because 7;(x) € S, and 7> (T; (x)) € S because T» maps
any element of S into an element of S. Hence, 77, T; € G. This completes the proof.

In particular, if x denotes a solution of a given differential equation F = 0 and
S is the totality of the solutions of F' = 0, then the above statement shows that the
collection of all transformations mapping any solution of F = 0 into a solution of
the same differential equation compose a group. It is called the group admitted by
the differential equation, or the symmetry group of the equation in question.

Part I of these notes introduces the reader to the basic concepts of the classical
theory of local transformation groups and their Lie algebras. It has been designed
for the graduate course on Transformation groups and Lie algebras that I have been
teaching at Blekinge Institute of Technology, Karlskrona, Sweden, since 2002. The



vi Preface

aim of this course was to augment a preliminary knowledge on symmetries of differ-
ential equations obtained by students during the course Differential equations based
on my book [17], A practical course in differential equations and mathematical
modelling.

Part II of these notes provides an easy to follow introduction to the new topic.
It is based on my talks at various conferences, in particular on the plenary lecture
at the International Workshop on “Differential equations and chaos” (University of
Witwatersrand, Johannesburg, South Africa, January 1996). The final form of the
presentation of this material, used in the present book, was prepared for my lec-
tures “Approximate transformation groups” delivered for MSc students at Blekinge
Institute of Technology since 2009.

Each part of the book contains an Assignment provided by detailed solutions
of all problems. I hope that these assignments will be useful both for students and
teachers.

Nail H. Ibragimov
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Part I
Local Transformation Groups



Calculations show that groups admitted by differential equations involve one or
more parameters and depend continuously on these parameters. This circumstance
led Lie to the concept of continuous transformation groups. Multi-parameter contin-
uous transformation groups are composed by one-parameter groups depending on
a single continuous parameter. Each one-parameter group is determined by its in-
finitesimal transformation or the corresponding first-order linear differential opera-
tor termed the generator of the one-parameter group. One-parameter transformation
groups and their generators are connected by means of the so-called Lie equations.
Since the existence of solutions of the Lie equations is guaranteed, in general, only
for values of the group parameter in a small neighborhood of its initial value, one
arrives at what is called local groups of continuous transformations.

The generators of multi-parameter transformation groups form specific linear
spaces known as Lie algebras. Description of continuous transformation groups in
terms of their Lie algebras simplifies the calculation and use of groups admitted
by differential equations significantly. Namely, the generators of continuous groups
admitted by a given differential equation are defined by solving an over-determined
system of linear differential equations known as determining equations. The charac-
teristic property of determining equations is that the totality of their solutions spans
a Lie algebra.

Due to the fundamental role of one-parameter groups in Lie’s theory of contin-
uous groups, it is natural to begin the study of the general theory of transforma-
tion groups and symmetries of differential equations by considering one-parameter
groups and their generators.



Chapter 1
Preliminaries

This chapter introduces the reader to a general idea of transformations and exhibits
a variety of transformation groups. The duality between changes of frames of ref-
erence and point transformations is useful in group analysis. We discuss the idea of
the duality in this chapter and will employ it in the next chapter for the prolongation
of point transformation groups to derivatives.

1.1 Changes of frames of reference and point transformations

1.1.1 Translations

Consider, in the (x,y) plane, a point P having the coordinates (x, y) in the rectangular
Cartesian reference frame with the axes Ox,0y. Let e = (e;,e2) be a fixed unit
vector. Consider a new pair of rectangular axes Ox, Oy parallel to the former axes
such that O has the coordinates (—ae;,—bey) with respect to the original frame of
reference, where a is an arbitrary real parameter. Then the coordinates (%,¥) of the
point P in the new frame of reference are given by

X=x-+ae;, y=y+be;. (1.1.1)

An alternative interpretation of Egs. (1.1.1) is as follows. One ignores the new
axes O¥, 0y and regards (x,y) and (%,) as the coordinates of points P and P, re-
spectively, each referred to the original frame Ox,Oy. Then Eqgs. (1.1.1) define a
transformation of the point P(x,y) into the new position P(%,¥) in the (x,y) plane.
Accordingly, equations (1.1.1) determine the displacement (translation) of all points
P of the plane through the distance a in the direction of the vector e.

1.1.2 Rotations

Consider again the rectangular Cartesian reference frame with the axes Ox, Oy. Let
Ox, Oy be the new pair of axes obtained by rotating the original axes round the origin
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O counter-clockwise through an angle a. Let (x,y) and (%,7) be the coordinates of a
point P referred to the axes Ox, Oy and OX, Oy, respectively. Then we have

X=xcosa+ysina, j=ycosa—xsina. (1.1.2)

Indeed, in the polar coordinates (r, 8), connected with the Cartesian coordinates by
the equations

x=rcos6, y=rsin0, (1.1.3)

the rotation by the angle a about the origin clockwise is written

F=r 6=0-—a. (1.1.4)

Equations (1.1.3), (1.1.4) yield the following transformation:
f=FcosB =rcos(@ —a), y=rsin@=rsin(6—a).

Expanding cos(6 — a) and sin(6 — a) and substituting rcos® = x, rsinf =y, one
arrives at Egs. (1.1.2).

An alternative interpretation of Egs. (1.1.2) is as follows. We regard (x,y) and
(%,y) as the coordinates of the points P and P, respectively, each referred to the
same axes Ox,Oy. Then Eqgs. (1.1.2) accomplish the rotation of all points of the
plane about O clockwise through the angle a.

1.1.3 Galilean transformation

Everyone travelling by train can observe the duality between uniform motions of
his local frame of reference (a train) and outside points (people or other objects
on a depot). This remarkable exhibition of the duality, when one cannot determine
who is actually moving, is known in the classical mechanics as Galileo’s relativity
principle. It is equivalent to the invariance of equations of motion of mechanical
systems under the transformation

t=t, =wx+1V, (1.1.5)
where V is the constant velocity. Differentiation of T with respect to 7 = 7 yields
v=v+V. (1.1.6)

The transformation (1.1.6) of the velocity is a mathematical expression of Galileo’s
relativity principle. The transformation (1.1.5) is known as the Galilean transforma-
tion and lies at the core of the Galilean group which is one of the most important
groups in non-relativistic physics.
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1.2 Introduction of transformation groups

1.2.1 Definitions and examples

We will consider invertible transformations in an n-dimensional Euclidean space
IR" defined, in coordinates, by equations of the form

¥=flx), i=1,...,n, (1.2.1)

where the vector-function f = (f',..., f") is continuous together with its derivatives
involved in further discussions. Since the transformation (1.2.1) is invertible, there
exists the inverse transformation

¥=H®, i=1,...,n. (1.2.2)

Let us denote the transformation (1.2.1) by 7 and its inverse (1.2.2) by 71,
Thus, T carries any point

x=@,... 2" €eR"

into a new position
= (%',...,¥") € R",

and 7! returns ¥ into the original position x. It is assumed that the coordinates x'
and X' of points x and X, respectively, are referred to one and the same coordinate
system. The identical transformation

¥ =x i=1,...,n (1.2.3)

will be denoted by 1.

Let 77 and 75 be two transformations of the form (1.2.1) with functions f{ and f{,
respectively. Their product T, T (termed also composition and denoted by 75 0 T7) is
defined as the consecutive application of these transformations and is given by

¥=AF=A0KK) i=1,..n (1.2.4)

The geometric interpretation of the product is as follows. Since 77 carries the point
x to the point ¥ = 7 (x), which 7 carries to the new position X = 75 (X), the effect of
the product 7»7; is to carry x directly to its final location X, without a stopover at X.
Thus, equation (1.2.4) means that

Y nE) =Bk, (1.2.5)

In this notation, the definition of the inverse transformation (1.2.2) means

TT'=T'r=1. (1.2.6)
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Definition 1.1. A set G of transformations (1.2.1) in IR"” containing the identity / is
called a transformation group if it contains the inverse 7~! of every transformation
T € G and the product T} 7> of any transformations 77,73 € G. Thus, the attributes
of the group G are:

1€G, and =1 g G, T1'T G whenever7T, 77,17 € G. (1.2.7)

Example 1.1. The set G = {I,T1,...,Ts} of the transformations

I:X=x, T1:x=1—x, L:x=—,

y (1.2.8)

1 S

I3:x= , TiiXx= ol " T5:f=x
1—x x—1 X

on the straight line is a group containing six elements (see, e.g., [6], §9). The group
properties (1.2.7) can be verified by computing the inverses and products of the
transformations (1.2.8), e.g.

T'=Nh5'=55%4"'=51"=0, "' =5,
T2=1, T?=1, T}=Ts, T}=1 T2=T, (1.2.9)
Lh=T, Tih=17, BH=T1, TI =Ty
Example 1.2. Consider the set G of all translations (displacements) 75 :
X=x+a (1.2.10)

on the straight line. Since X = x when a = 0, the set G contains the identity / = Tj.
Furthermore, the combined effect of two translations, 7, and 7}, acting in succes-
sion, is to displace x through the distance a + b. Hence,

ToTo = Tasp. (1.2.11)

Equation (1.2.11) shows that
T '=T.,.

a

Thus, the transformations (1.2.10) obey the group properties (1.2.7), and hence de-
fine a one-parameter group G, i.e. a group containing one arbitrary parameter a.
This group is known as the translation group and provides one of the simplest illus-
trations to the following definition.

Definition 1.2. A set G of transformations 7, in IR" depending continuously on a
parameter a, where a ranges over all real numbers from a given interval U C R, is
called a one-parameter group if there is a unique value a = ag in U providing the
identical transformation, 7, = /, and the following conditions hold for all a,b € U :

T,'=T,1€G, TT,=T.€G, (1.2.12)



