B i SR EANE LM RS

Assembly Language
for x86 Processors sixth Edition

CREERF Rt

(556hR)

Kip R. Irvine Z&

AERF HhR$T

RFWRAKE EHIFLHAMZF] (BER)

Assembly Language for x86 Processors

Sixth Edition

C4E SRRt
(55 6 kO

Kip R. Irvine

1

i
&
H_

¥ AR
bt X

AL

English reprint edition copyright © 2011 by PEARSON EDUCATION ASIA LIMITED and
TSINGHUA UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Assembly Language for x86 Processors, Sixth Edition by Kip R.
Irvine, Copyright © 2011
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China
(excluding the Special Administrative Region of Hong Kong, Macao SAR and Taiwan).
KB LENPR B Pearson Education (R AE3H HIRERD PR E R B R R AT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kaong SAR and Macao SAR).
(URFhEARSMEEH(FRFPEEE. R MENTHRAPEATBXE)HERT.

IR AN SREZILE EF 01-2011-1756 5

X $3E 54 Pearson Education(}24 3 E HAE EFEROL B 0IFE, THEETHHE.
ERANERT, B, (BHEIREIE: 010-62782989 13701121933

B £ R B (C1P) 337

SC41E S FRF % =Assembly Language for x86 Processors: 3 6 Mi: 3830/ (3D HIRHE
(Irvine, K. R.) %, -BEIA, ~Jh5i: FERFHMRL, 201110
(k#ﬁﬁﬂﬁﬁ@%%%ﬁﬂ%ﬂ)

1SBN 978-7-302-26030-1
[. D U. QK- M. OQURES —EFRIE—HEX V. OTP3I3

o W AR A B B CIP #E M F (2011) 131333 &

EEMEE: ek ,

HEENH: 1FH% ‘ Lot

HER&IT: FEERFEHRA H b bRUERKEEVIRE A B
http:/ /www.tup.com.cn 1 “%%: 100084
it & #: 010-62770175 fF M. 010-62786544

BRESIHRERE: 01062795954, jsijic@mp.isinghua.edu.cn

B B R I8 010-62772015, zhiliang@tup.tsinghua.edu.cn

=& TEHERRA R

SEFERE

148%210 EQk: 23.375

2011 EE10 HE I Bl k. 2011 4 10 A5 1 XENR
1~3000

39.00 7T

037755-01

Jidk

MOEHRES
o | SSEE3E Pl Dk

=
=il
1

i B

A 21 e, HAZSEMSH. BHELURSEEE IS EE
WEEL. mFHPOERRENAA WS BT KEREFROAL,
WA RS PNANSE. SFHE, EARRESERAA M,
UAZ R SEEN. BRESSHENEMETRE, b T E
MR, HE AR IR B E &R KA E AN RREM .

HHERFHBRFAN 1996 FH4E, SESIEZHRAREE, #
EIHRR T “RFTFENHEEAL (RO £—R55|3HEHE, %
FIE AR PR, BA 21 e, RINEAEARESSEHT
EMBERSHVIE, AEFENEM L, #—-SF KEENE, &%
BB AR, — B #iER X T RIS H TR E &S 4R
RETENBENE ISR B NE LB, ARAE “KETEN
HEESIEZBEM RS GEORD”, LUREE. HUIHRILE REHE
A RFIBEM BB RIE N RIBARN, FAEENLER. BIFH
W BATEFEESMTEN B ERRTFEM, LRI “ R2ETENL
HEEIZERZBEMRY CGEERRD” AR, Fi&EA I ENR
i,

RPN el

To Jack and Candy Irvine

Preface

Assembly Language for x86 Processors, Sixth Edition, teaches assembly language programming
and architecture for Intel and AMD processors. It is an appropriate text for the following types
of college courses:

» Assembly Language Programming

« Fundamentals of Computer Systems

¢ Fundamentals of Computer Architecture
Students use Intel or AMD processors and program with Micresoft Macro Assembler (VASM),
running on Windows 98, XP, Vista, and Windows 7. Although this book was originally designed
as a programming textbook for college students, it serves as an effective supplement to computer
architecture courses. As a testament to its popularity, previous editions have been translated into
Spanish, Korean, Chinese, French, Russian, and Polish.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses
in computer architecture, operating systems, and compiler writing:
* Virtual machine concept
* Instruction set architecture
* Elementary Boolean operations
* Instruction execution cycle
* Memory access and handshaking
* Interrupts and polling
» Hardware-based I/O
+ Floating-point binary representation
Other topics relate specially to Intel and AMD architecture:

* Protected memory and paging

* Memory segmentation in real-address mode

* 16-bit interrupt handling

» MS-DOS and BIOS system calls (interrupts)

* Floating-point unit architecture and programming

¢ Instruction encoding
Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

* Searching and sorting algorithms

* High-level language structures

Xix

XX Preface

P
*— o

« Finite-state machines
¢ Code optimization examples

What’s New in the Sixth Edition
In this revision, we have placed a strong emphasis on improving the descriptions of important
programming concepts and relevant program examples.

* We have added numerous step-by-step descriptions of sample programs, particularly in
Chapters 1-8.

* Many new illustrations have been inserted into the chapters to improve student comprehen-
sion of concepts and details.

* Java Bytecodes: The Java Virtual Machine (JVM) provides an excellent real-life example of
a stack-ortented architecture. It provides an excellent contrast to x86 architecture. Therefore,
in Chapters 8 and 9, the author explains the basic operation of Java bytecodes with short illus-
trative examples. Numerous short examples are shown in disassembled bytecode format, fol-
lowed by detailed step-by-step explanations.

* Selected programming exercises have been replaced in the first 8 chapters. Programming
exercises are now assigned stars to indicate their difficulty. One star is the easiest, four stars
indicate the most difficult level.)

* Tutorial videos by the author are available on the Companion Web site (www.pearsonhighered.com/
irvine) to explain worked-out programming exercises.

* The order of chapters in the second half of the book has been revised to form a more logical
sequence of topics, and selected chapters are supplied in electronic form for easy searching.

This book is still focused on its primary goal, to teach students how to write and debug programs
at the machine level. It will never replace a complete book on computer architecture, but it does
give students the first-hand experience of writing software in an environment that teaches them
how a computer works. Our premise is that students retain knowledge better when theory is
combined with experience. In an engineering course, students constrict prototypes; in a com-
puter architecture course, students should write machine-level programs. In both cases, they have
a memorable experience that gives them the confidence to work in any OS/machine-oriented
environment.

Real Mode and Protected Mode This edition emphasizes 32-bit protected mode, but it still
has three electronic chapters devoted to real-mode programming. For example, there is an entire
chapter on BIOS programming for the keyboard, video display (including graphics), and mouse.
Another chapter covers MS-DOS programming using interrupts (system calls). Students can
benefit from programming directly to hardware and the BIOS.

The examples in the first half of the book are nearly all presented as 32-bit text-oriented appli-
cations running in protected mode using the flat memory model. This approach is wonderfully
simple because it avoids the complications of segment-offset addressing. Specially marked para-
graphs and popup boxes point out occasional differences between protected mode and real-mode
programming. Most differences are abstracted by the book’s parallel link libraries for real-mode
and protected mode programming,

Preface

Link Libraries We supply two versions of the link library that students use for basic input-
output, simulations, timing, and other useful stuff. The 32-bit version (Irvine32.lib) runs in
protected mode, sending its output to the Win32 console. The 16-bit version (Irvine16.1ib) runs
in real-address mode. Full source code for the libraries is supplied on the Companion Web site.
The link libraries are available only for convenience, not to prevent students from learning how
to program input-output themselves. Students are encouraged to create their own libraries.

Inciuded Software and Examples All the example programs were tested with Microsoft
Macro Assembler Version 10.0, running in Microsoft Visual Studio 2010. In addition, batch files
are supplied that permit students to assemble and run applications from the Windows command
prompt. The 32-bit C++ applications in Chapter 14 were tested with Microsoft Visual C++ NET.

Web Site Information Updates and corrections to this book may be found at the Companion
Web site, including additional programming projects for instructors to assign at the ends of chapters.

Overall Goals
The following goals of this book are designed to broaden the student’s interest and knowledge in

topics related to assembly language:
» Intel and AMD processor architecture and programming
« Real-address mode and protected mode programming
* Assembly language directives, macros, operators, and program structure
« Programming methodology, showing how to use assembly language to create sysiem-level
software tools and application programs
« Computer hardware manipulation
« Interaction between assembly language programs, the operating system, and other applica-
tion programs
One of our goals is to help students approach programming problems with 2 machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation
as directly as possible. A debugger is a programmer’s best friend, not only for catching errors,
but as an educational tool that teaches about the CPU and operating system. We encourage stu-
dents to look beneath the surface of high-level languages and to realize that most programming
languages are designed to be portable and, therefore, independent of their host machines. In
addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as
guides to MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least
one high-level programming language such as Python, Java, C, or C++. One chapter covers C++
interfacing, so it is very helpful to have a compiler on hand. Thave used this book in the class-
room with majors in both computer science and management information systems, and it has
been used elsewhere in engineering courses.

Features

Complete Program Listings The Companion Web site contains supplemental learning mate-
rials, study guides, and all the source code from the book’s examples. An extensive link library

xxii Preface

Py 7'y
*— o

is supplied with the book, containing more than 30 procedures that simplify user input-output,
numeric processing, disk and file handling, and string handling. In the beginning stages of the
course, students can use this library to enhance their programs. Later, they can create their
own procedures and add them to the library.

Programming Logic Two chapters emphasize Boolean logic and bit-level manipulation. A
conscious attempt is made to relate high-level programming logic to the low-level details of the
machine. This approach helps students to create more efficient implementations and to better
understand how compilers generate abject code.

Hardware and Operating System Concepts The first two chapters introduce basic hard-
ware and data representation concepts, including binary numbers, CPU architecture, status flags,
and memory mapping. A survey of the computer’s hardware and a historical perspective of the
Intel processor family helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5, procedures and functional
decomposition are emphasized. Students are given more complex programming exercises,
requiring them to focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine In Chapters 8 and 9, the author explains the
basic operation of Java bytecodes with short illustrative examples. Numerous short examples are
shown in disassembled bytecode format, followed by detailed step-by-step explanations.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage
system on MS-Windows-based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link
library and create new libraries. They learn to use a toolbox approach to programming and to
write code that is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros,
which are essential in assembly language and systems programming. Conditional macros with
advanced operators serve to make the macros more professional.

interfacing to High-Level Languages A chapter is devoted to interfacing assembly lan-
guage to C and C++. This is an important job skill for students who are likely to find jobs pro-
gramming in high-level languages. They can learn to optimize their code and see examples of
how C++ compilers optimize code.

Instructional Aids All the program listings are available on the Web. Instructors are provided
a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

VideoNotes VideoNotes are Pearson's new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate how to solve
problems from design through coding. VideoNotes allow for self-paced instruction with
easy navigation including the ability to select, play, rewind, fast-forward, and stop within each
VideoNote exercise. A note appears within the text to designate that a VideoNote is available.

Preface xxiii

VideoNotes are free with the purchase of a new textbook. To purchase access to VideoNotes,
go to www.pearsonhighered.com/irvine and click on the VideoNotes under Student Resources.

Chapter Descriptions

Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows
how later chapters depend on knowledge gained from other chapters.

1 through 9

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2. x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86
processor architecture, x86 memory management, components of a microcomputer, and the
input-output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and
debugging, and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instractions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack oper-
ations, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and
loops, high-level logic structures, and finite-state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication
and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE
directives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining
repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the
Microsoft-Windows API to display text and colors, and dynamic memory allocation.

12. Floating-Point Processing and Instruction Encoding: Floating-point binary representa-
tion and floating-point arithmetic. Learning to program the IA-32 floating-point unit. Under-
standing the encoding of IA-32 machine instructions.

Preface

XXiv
-

13. High-Level Language Interface: Parameter passing conventions, inline assembly code, and
linking assembly language modules to C and C++ programs.

14. 16-Bit MS-DOS Programming: Calling MS-DOS interrupts for console and file input-output.
» Appendix A: MASM Reference
* Appendix B: The x86 Instruction Set.
« Appendix C: Answers to Review Questions

The following chapters and appendices are supplied online at the Companion Web site:

15. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation
tables, handling MS-DOS error codes, and drive and directory manipulation.

16. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

17. Expert MS-DOS Programming: Custom-designed segments, runtime program structure,
and Interrupt handling. Hardware control using 1/O ports.
» Appendix D: BIOS and MS-DOS Interrupts
« Appendix E: Answers to Review Questions (Chapters 15-17)

Instructor and Student Resources

Instructor Resource Malerials
The following protected instructor material is available on the Companion Web site:

www.pearsonhighered.com/irvine

For username and password information, please contact your Pearson Representative.

e Lecture PowerPoint Slides
« Instructor Solutions Manual

Student Resource Materials
The student resource materials can be accessed through the publisher's Web site located at

www.pearsonhighered.com/irvine. These resources include:
* VideoNotes
* Online Chapters and Appendices
¢ Chapter 15: Disk Fundamentals
» Chapter 16: BIOS-Level Programming
* Chapter 17: Expert MS-DOS Programming
* Appendix D: BIOS and MS-DOS Interrupts
* Appendix E: Answers to Review Questions (Chapters 15-17)
Students must use the access card located in the front of the book to register and access the online
chapters and VideoNotes. If there is no access card in the front of this textbook, students can purchase
access by going to www.pearsonhighered.com/irvine and selecting “purchase access to premium
content.” Instructors must also register on the site to access this material. Students will also find a link
to the author’s Web site. An access card is not required for the following materials:
« Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual
Studio for assembly language programming.
« Supplementary articles on assembly language programming topics.

Preface Xxv

P Py
*— —e

= Complete source code for all example programs in the book, as well as the source code for
the author’s supplementary library.

* Assembly Language Workbook, an interactive workbook covering number conversions,
addressing modes, register usage, debug programming, and floating-point binary numbers.
Content pages are HTML documents to allow for customization. Help File in Windows Help
Format.

« Debugging Tools: Tutorials on using Microsoft CodeView, MS-DOS Debug, and Microsoft
Visual Studio.

Acknowledgments

Many thanks are due to Tracy Dunkelberger, Executive Editor for Computer Science at Pearson
Education, who has provided friendly, helpful guidance over the past few years. Maheswari Pon-
Saravanan of TexTech International did an excellent job on the book production, along with Jane
Bonnell as the production editor at Pearson. Many thanks to Scott Disanno, the book’s managing
editor, and Melinda Haggerty, the assistant editor.

Sixth Edition
Many thanks are due to Professor James Brink of Pacific Lutheran University, Professor David

Topham of Ohlone College, and Professor W. A. Barrett of San Jose State University. All have
contributed excellent code examples and debugging suggestions to this book. In addition, I give
grateful acknowledgment to the reviewers of the Sixth edition:

« Hisham Al-Mubaid, University of Houston, Clearlake

+ John-Thones Amenyo, York College of CUNY

« John F. Doyle, Indiana University, Southeast

« Nicole Jiao, South Texas Community College

« Remzi Seker, University of Arkansas, Little Rock

Previous Editions
T offer my special thanks to the following individuals who were most helpful during the develop-

ment of earlier editions of this book:
» William Barrett, San Jose State University
 Scott Blackledge
« James Brink, Pacific Lutheran University
« Gerald Cahill, Antelope Valley College
« John Taylor

=Abour the Author

Kip Irvine has written five computer programming textbooks, for Intel Assembly Language,
C++, Visual Basic (beginning and advanced), and COBOL. His book Assembly Language for
Intel-Based Computers has been translated into six languages. His first college degrees (B.M.,
M.M., and doctorate) were in Music Composition, at University of Hawaii and University
of Miami. He began programming computers for music synthesis around 1982 and taught pro-
gramming at Miami-Dade Community College for 17 years. Kip earned an M.S. degree in Com-
puter Science from the University of Miami, and he has been a full-time member of the faculty
in the School of Computing and Information Sciences at Florida International University since
2000.

[]

xxvii

CONTENTS

1.2

1.3

1.4

1.5
1.6

Preface xix

Basic Concepts 1

Welcome to Assembly Language 1
1.1.1 Good Questions to Ask 2

1.1.2 Assembly Language Applications 5
1.1.3 Section Review 6

Virtual Machine Concept 7

1.2.1 Section Review ‘9

Data Representation 9
1.3.1 Binary Integers 9

1.3.2 Binary Addition 11

1.3.3 Integer Storage Sizes 12
1.34 Hexadecimal Integers 13
1.3.5 Signed Integers 15

1.3.6 Character Storage 17
1.3.7 Section Review 19

Boolean Operations 22
1.4.1 Truth Tables for Boolean Functions 24
1.4.2 Section Review 26

Chapter Summary 26

Exercises 27
1.6.1 Programming Tasks 27
1.62 Nonprogramming Tasks 27

x86 Processor Architecture 29

General Concepts 29

2.1.1 Basic Microcomputer Design 30
2.1.2 Instruction Execution Cycle 31
2.1.3 Reading from Memory 33

2.1.4 How Programs Run 34

2.1.5 Section Review 35

+

vi

Contents

2.2

23

2.4

25

2.6
_7

3.1

3.2

3.3

%86 Architecture Details 36

2.2.1 Modes of Operation 36

222 Basic Execution Environment 36
2.2.3 Floating-Point Unit 39

2.2.4 Overview of Intel Microprocessors 39
2.2.5 Section Review 42

x86 Memory Management 43
2.3.1 Real-Address Mode 43

2.3.2 Protected Mode 45

2.3.3 Section Review 47

Components of a Typical x86 Computer 48
2.4.1 Motherboard 48

242 Video Qutput 50

24.3 Memory 350

24.4 Input-Output Ports and Device Interfaces 50

24.5 Section Review 352

Input-Output System 52
2.5.1 Levels of /O Access 52
2.5.2 Section Review 55

Chapter Summary 55
Chapter Exercises 57

Assembly Language Fundamentals

Basic Elements of Assembly Language 58
3.1.1 Integer Constants 59

3.1.2 Integer Expressions 60

3.1.3 Real Number Constants 61

3.1.4 Character Constants - 6}

3.1.5 String Constants 61

3.1.6 Reserved Words 62

3.1.7 Identifiers 62

3,1.8 Directives 62

3.1.9 Instructions 63

3.1.10 The NOP (No Operation) Instruction 65
3.1.11 Section Review 66

Example: Adding and Subtracting Integers 66
3.2.1 Alternative Version of AddSub 69

3.2.2 Program Template 70

3.2.3 Section Review 70

Assembling, Linking, and Running Programs 71
3.3.1 The Assemble-Link-Execute Cycle 71
3.3.2 Section Review 77

58

CoNTENTS

3.4 Defining Data 77
3.4.1 Intrinsic Data Types 77
3.4.2 Data Definition Statement 77
3.43 Defining BYTE and SBYTE Data 78
3.44 Defining WORD and SWORD Data 80
3.4.5 Defining DWORD and SDWORD Data 81
3.4.6 Defining QWORD Data 81
3.4.7 Defining Packed Binary Coded Decimal (TBYTE) Data 82
3.4.8 Defining Real Number Data 83
349 Little Endian Order 83
3.4.10 Adding Variables to the AddSub Program 84
3.4.1! Declaring Uninitialized Data 85
3.4.12 Section Review 85

3.5 Symbolic Constants 86
3.5.1 Equal-Sign Directive 86
3.5.2 Calculating the Sizes of Arrays and Strings 87
3.5.3 EQU Directive 88
3.5.4 TEXTEQU Directive 89
355 Section Review 90

3.6 Real-Address Mode Programming (Optional) 90
3.6.1 Basic Changes 90

3.7 Chapter Summary 91
3.8 Programming Exercises 92

4 Data Transfers, Addressing,
and Arithmetic 94

4.1 Data Transfer Instructions 94
4.1.1 Introduction 94
4.1.2 Operand Types 95
4.13 Direct Memory Operands 96
4.1.4 MOV Instruction 96
415 Zero/Sign Extension of Integers 98
4.1.6 LAHF and SAHF Instructions 100
417 XCHG Instruction 100
4.1.8 Direct-Offset Operands 101
419 Example Program (Moves) 102
4.1.10 Section Review 103

42 Addition and Subtraction 104
42.1 INC and DEC Instructions 104
422 ADD Instruction 104
423 SUB Instruction 105
4.2.4 NEG Instruction 105

vili

Conrents

4.3

4.4

4.5

4.6
4.7

5.1
5.2

5.3

54

4.2.5 Implementing Arithmetic Expressions 106
4.2.6 Flags Affected by Addition and Subtraction
4.2.7 Example Program (AddSub3) 110

42.8 Section Review 111

Data-Related Operators and Directives
43.1 OFFSET Operator 112

4.3.2 ALIGN Directive 113

433 PTR Operator 114

4.3.4 TYPE Operator 115

43.5 LENGTHOF Operator 115

43.6 SIZEOF Operator 116

4.3.7 LABEL Directive 116

43.8 Section Review 117

Indirect Addressing 117
44.1 Indirect Operands 118
442 Arrays 119

443 Indexed Operands 120
4.4.4 Pointers 121

44.5 Section Review 123

JMP and LOOP Instructions 124
4.5.1 JMP Instruction 124

4.5.2 LOOP Instruction 124

4.5.3 Summing an Integer Array 126
45.4 CopyingaString 126

455 Section Review 127

Chapter Summary 128
Programming Exercises 129

Procedures 132
introduction 132

Linking to an External Library 132
5.2.1 Background Information 133
52.2 Section Review 134

The Book’s Link Library 134

5.3.1 Overview 136

5.3.2 Individual Procedure Descriptions 137
5.3.3 Library Test Programs 149

5.3.4 Section Review 157

Stack Operations 157

54.1 Runtime Stack 158

5.4.2 PUSH and POP Instructions 160
5.4.3 Section Review 162

106

112

