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Preface

This book contains the proceedings of the summer school “Optimal trans-
portation: Theory and Applications™ held at the Fourier Institute (University of
Grenoble I, France). The first 2 weeks were devoted to courses that described
the main properties of optimal transportation and discussed its applications to
analysis, differential geometry, dynamical systems, partial differential equa-
tions and probability theory. Courses were addressed both to students and
researchers. A workshop took place during the last week. The aim of this
conference was to present very recent developments of optimal transportation
and also its applications in biology, mathematical physics, game theory and
financial mathematics.

The first part of the book contains (expanded) versions of the courses.
There are two sets of notes by F. Santambrogio. The first one gives a short
introduction to optimal transport theory. In particular, the Kantorovich duality,
the structure of Wasserstein spaces and the Monge—Ampere equations related
to optimal transport are presented to the readers. These notes could be seen
as an introduction for the other papers of the book. The second one describes
applications to economics, game theory and urban planning.

The notes of 1. Gentil, P. Topping and S.-I. Ohta describe (with different
flavours) the connections between optimal transport and the notion of Ricci
curvature, which is a very important tool in classical Riemannian geome-
try. A notion of curvature-dimension condition was defined by D. Bakry and
M. Emery to study geometric properties of diffusions and to get functional
inequalities. 1. Gentil’s notes study the Bakry—Emery condition in the case
of the Ornstein—Uhlenbeck semigroup. A quite different approach using opti-
mal transport theory to obtain logarithmic Sobolev-type inequalities is also
discussed. A definition of metric measure spaces with lower Ricci curvature
bound (which coincides with the classical definition in the case of Rieman-
nian manifolds) was proposed very recently by K.-T. Sturm and J. Lott-C.

ix



X Preface

Villani independently. S.-I. Ohta’s long paper discusses in detail the geometry
of such spaces. For instance, versions of the Brunn—-Minkowski inequality, of
the Lichnerowicz inequality, of Bishop—Gromov volume comparison, of the
Bonnet-Myers diameter bound and also the stability under Hausdorff-Gromov
convergence are proved in this general setting. The theory of Ricci flow as
developed by R. Hamilton and others since 1982 is an essential element in the
proofs by G. Perelman of the Poincaré conjecture and Thurston’s geometrisa-
tion conjecture. The objective of P. Topping’s lectures is to explain this theory
from the point of view of optimal transport.

The fundamental work of Y. Brenier related to the Euler equation played an
important role in the renewal of optimal transport in the 1980s. The notes of L.
Ambrosio and A. Figalli describe some recent results on Brenier’s variational
models for the incompressible Euler equations.

The paper by S. Daneri and G. Savaré gives an overview of the theory of
gradient flows in Euclidean spaces and then in metric spaces. Applications to
evolution equations in the Wasserstein spaces of probability measures are also
discussed.

Apart from these mini-courses, this book also contains five research/survey
papers. O. Besson, M. Picq and J. Pousin present an algorithm for a computing
mass transport problem inspired from optimal transport and whose origin lies
in hearts’ images tracking. M. Beigblock, C. Léonard and W. Schachermayer
discuss the duality theory for the Monge—Kantorovich transport problem. In
particular, they give a version of Fenchel’s perturbation method. The paper
of F. Bolley reviews recent quantitative results on the approximation of mean
field diffusion equations by large systems of interacting particles, obtained
by optimal coupling methods. P. Cattiaux and A. Guillin describe some recent
results on Poincaré-type inequalities, transportation-information inequalities or
logarithmic Sobolev inequality obtained via Lyapounov conditions. Q. Mérigot
proves the stability of the Federer curvature measures with respect to the
Wasserstein distance. This was motivated by problems of reconstruction of
curves and surfaces from point cloud approximation that come from image
analysis for instance. These five contributions illustrate the variety of possible
applications of optimal transport to pure and applied mathematics, and also to
computer science.
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1
Introduction to optimal transport theory

FILIPPO SANTAMBROGIO

Abstract

These notes constitute a sort of crash course in optimal transport theory.
The different features of the problem of Monge—Kantorovitch are treated,
starting from convex duality issues. The main properties of space of
probability measures endowed with the distances W), induced by optimal
transport are detailed. The key tools connecting optimal transport and
partial differential equations are provided.

Contents

1.1 Introduction
1.2 Primal and dual problems
1.2.1 Kantorovich and Monge problems
1.2.2  Duality
1.2.3 The case c(x, y) = |x — y|
1.24  c¢(x,y) = h(x — y) with A strictly convex and the
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4 F. Santambrogio

1.1 Introduction

These very short lecture notes are not intended to be an exhaustive presen-
tation of the topic, but only a short list of results, concepts and ideas which
are useful when dealing for the first time with the theory of optimal transport.
Several of these ideas have been used, and explained in greater detail, during
the other classes of the Summer School “Optimal Transportation: Theory and
Applications” which were the occasion for the redaction of these notes. The
style that was chosen when preparing them, in view of their use during
the Summer School, was highly informal, and this revised version will respect
the same style.

The main references for the whole topic are the two books on the subject
by C. Villani [15, 16]. For what concerns curves in the space of probability
measures, the best specifically focused reference is [2]. Moreover, I am also
very indebted to the approach that L. Ambrosio used in a course at SNS Pisa
in 2001-02 and I want to cite this as another possible reference [1].

The motivation for the whole subject is the following problem proposed
by Monge in 1781 [14]: given two densities of mass f, g > 0 on R¢, with
[f=/[g=1,findamap T : R? — R pushing the first one onto the other,
i.e. such that

/ gx)dx = / f(y)dy for any Borel subset A C R? (1.1)
A T=1(A)
and minimizing the quantity

[, 17— sl s

among all the maps satisfying this condition. This means that we have a collec-
tion of particles, distributed with density f on R?, that have to be moved, so that
they arrange according to a new distribution, whose density is prescribed and is
g. The movement has to be chosen so as to minimize the average displacement.
The map T describes the movement (that we must choose in an optimal way),
and 7' (x) represents the destination of the particle originally located at x. The
constraint on 7' precisely accounts for the fact that we need to reconstruct the
density g. In the following, we will always define, similarly to (1.1), the image
measure of a measure p on X (measures will indeed replace the densities f
and g in the most general formulation of the problem) through a measurable
map T : X — Y: it is the measure denoted by Ty on Y and characterized
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by
Ty(A) = w(T~Y(A)) for every measurable set A,

or f ¢ d(Tep) = f ¢oT du forevery measurable function ¢.
Y X

The problem of Monge has stayed with no solution (Does a minimizer exist?
How to characterize it?. . . ) until the progress made in the 1940s. Indeed, only
with the work by Kantorovich in 1942 has it been inserted into a suitable frame-
work which gave the possibility to approach it and, later, to find that solutions
actually exist and to study them. The problem has been widely generalized, with
very general cost functions c(x, y) instead of the Euclidean distance |x — y|
and more general measures and spaces. For simplicity, here we will not try to
present a very wide theory on generic metric spaces, manifolds and so on, but
we will deal only with the Euclidean case.

1.2 Primal and dual problems

In what follows we will suppose £ to be a (very often compact) domain of R?
and the cost function ¢ : 2 x 2 — [0, +oo[ will be supposed continuous and
symmetric (i.e. c(x, y) = c(y, x)).

1.2.1 Kantorovich and Monge problems

The generalization that appears as natural from the work of Kantorovich [12]
of the problem raised by Monge is the following:

Problem 1. Given two probability measures p and v on €2 and a cost function
c: Q2 x Q — [0, +00] we consider the problem

(K) minI/ﬂ chylyeﬂ(u,v)}, (1.2)

where T1(u, v) is the set of the so-called transport plans, i.e. I1(i, v) = {y €
P2 x Q) : (p+)#y = u, (p7)sy = v}, where pt and p~ are the two pro-
jections of €2 x € onto . These probability measures over 2 x 2 are an
alternative way to describe the displacement of the particles of p: instead of
saying, for each x, which is the destination T'(x) of the particle originally
located at x, we say for each pair (x, y) how many particles go from x to y. It
is clear that this description allows for more general movements, since from a
single point x particles can a priori move to different destinations y. If multiple
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destinations really occur, then this movement cannot be described through a
map 7'. Notice that the constraints on ( pi)#y exactly mean that we restrict our
attention to the movements that really take particles distributed according to
the distribution 1 and move them onto the distribution v.

The minimizers for this problem are called optimal transport plans between
 and v. Should y be of the form (id x T)yu for a measurable map 7" : 2 — 2
(i.e. when no splitting of the mass occurs), the map 7" would be called an optimal
transport map from p to v.

Remark 1. It can be easily checked that if (id x T)su belongs to IT(x, v)
then 7' pushes p onto v (i.e. v(A) = u(T"'(A)) for any Borel set A) and
the functional takes the form f c(x, T(x))u(dx), thus generalizing Monge’s
problem.

This generalized problem by Kantorovich is much easier to handle than the
original one proposed by Monge, for instance, in the Monge case we would
need existence of at least a map T satisfying the constraints. This is not verified
when o = &, if v is not a single Dirac mass. On the contrary, there always
exists a transport plan in IT(x, v) (for instance, u ® v € I1(u, v)). Moreover,
one can state that (K) is the relaxation of the original problem by Monge:
if one considers the problem in the same setting, where the competitors are
transport plans, but sets the functional at +o0o on all the plans that are not of
the form (id x T ), then one has a functional on IT(u, v) whose relaxation is
the functional in (K) (see [3]).

Anyway, it is important to notice that an easy use of the direct method
of calculus of variations (i.e. taking a minimizing sequence, saying that it is
compact in some topology — here it is the weak convergence of probability
measures — finding a limit, and proving semicontinuity (or continuity) of the
functional we minimize, so that the limit is a minimizer) proves that a minimum
does exist.

As a consequence, if one is interested in the problem of Monge, the question
may become “Does this minimum come from a transport map 77" Actually,
if the answer to this question is yes, then it is evident that the problem of
Monge has a solution, which also solves a wider problem, that of minimizing
among transport plans. In some cases, proving that the optimal transport plan
comes from a transport map (or proving that there exists at least one optimal
plan coming from a map) is equivalent to proving that the problem of Monge
has a solution, since very often the infimum among transport plans and among
transport maps is the same. Yet, in the presence of atoms, this is not always the
case, but we will not insist any more on this degenerate case.



