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To the memory of Friedrich Hirzebruch






Preface

This book is devoted to a study of quotients of the complex 2-ball yielding finite
coverings of the projective plane branched along certain line arrangements. It
is intended to be an introduction for graduate students and for researchers.
We give a complete list of the known weighted line arrangements that can give
rise to such ball quotients, and then we provide a justification for the existence
of the ball quotients. The Miyaoka-Yau inequality for surfaces of general type,
and its analogue for surfaces with an orbifold structure, plays a central role.

The book has its origins in a Nachdiplom course given by F. Hirzebruch
at the ETH Ziirich during the Spring of 1996. I (née Cohen) was at that
time Directeur de Recherche au CNRS at the Université de Lille 1, and a
guest of ETH Ziirich. I attended the course, lectured on some of the material
on hypergeometric functions, and made the original set of notes for all
Hirzebruch’s lectures. I also presented related material as a two-semester
graduate course at Princeton University during the academic year 2001/2002
while I was Visiting Professor there. The ETH Nachdiplom course notes were
subsequently developed and refined by F. Hirzebruch and me during regular
visits to the Max Planck Institute in Bonn. I thank ETH Ziirich, MPI Bonn, and
Princeton University for their support during the preparation of this book.

After working on the book together for some years, F. Hirzebruch and
I decided even more additional material seemed desirable and, at that point,
F. Hirzebruch asked me to complete the book under my own name. The book
entitled Geradenkonfigurationen und Algebraische Flichen, Vieweg, 1987, by
G. Barthel, F. Hirzebruch, and T. Hofer, served as a valuable resource and
reference. This book is in German, and we have mined some of its contents as
needed. The present book assumes less background than the earlier book, and
we revisit in more detail several of its important subjects. We have also added
material not found in that book. For example, we present a more organized list
of the possible weights on line arrangements that yield finite covers that are
ball quotients, and we devote a whole chapter, rather than just a few pages, to
the question of the existence of such ball quotients. Also, we include material
on hypergeometric functions.

The book is dedicated to the memory of F. Hirzebruch. I am grateful
beyond words for the time and attention he paid to this project amid the many
commitments of his important and busy life.
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Introduction

Historical precedent for the results in this book can be found in the theory
of Riemann surfaces. Every compact Riemann surface of genus g > 2 has
representations both as a plane algebraic curve, and so as a branched covering
of the complex projective line, and as a quotient of the complex 1-ball, or unit
disk, by a freely acting cocompact discrete subgroup of the automorphisms
of the 1-ball. The latter result is a direct consequence of the uniformization
theorem, which states that the simply-connected Riemann surfaces are the
Riemann sphere, the complex plane, and the complex 1-ball.

In complex dimension 2, Hirzebruch (1956) and Yau (1978) showed that
the smooth compact connected complex algebraic surfaces, representable
as quotients of the complex 2-ball B, by freely acting cocompact discrete
subgroups of the automorphisms of the 2-ball, are precisely the surfaces of
general type whose Chern numbers satisfy ¢ = 3c,. Here, ¢ is the Euler
characteristic and c7 is the self-intersection number of the canonical divisor.
Accordingly, the proportionality deviation of a complex surface is defined by
the expression 3c; — c?. This book examines the explicit computation of this
proportionality deviation for finite covers of the complex projective plane
ramified along certain line arrangements. Candidates for ball quotients among
these finite covers arise by choosing weights on the line arrangements such that
the proportionality deviation vanishes. We then show that these ball quotients
actually exist.

The intention of F. Hirzebruch in the original notes was for the material to
be presented in a nontechnical way, assuming a minimum of prerequisites,
with definitions and results being introduced only as needed. The desire
was for the reader to be exposed to the theory of complex surfaces—and of
complex surfaces with an orbifold structure—through the examples provided
by weighted line arrangements in the projective plane, with an emphasis on
their finite covers which are ball quotients. There was no desire to develop
a complete theory of surfaces and orbifolds although relevant references are
provided, or to treat the latest developments, or to also survey results in
higher dimensions. Instead, the goal was that, on reading the book, the student
or researcher should be better equipped to go into more technical or more
modern territory if interested. It was felt that the topic of the notes was
important enough historically to warrant their appearance. F. Hirzebruch
wanted the style of the original notes to be like that of his series of lectures,
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and for them to remain readable and conversational; and, even though a lot of
material has been added since by me, I have aimed to retain those qualities.

The plan of the book is as follows. In Chapter 1, we collect in one place
the main prerequisites from topology and differential geometry needed for
subsequent chapters, although, for convenience, pieces of this material are
at times repeated or expanded upon later in the book. Even if the reader is
familiar with these topics, it is worth his or her while to leaf through Chapter 1
to see what notions and notations are used later.

In Chapter 2, we apply some of the material from Chapter 1 to Riemann
surfaces—which are of real dimension 2—by way of a historical and conceptual
motivation for the material on complex surfaces. We also discuss in this
chapter the classical Gauss hypergeometric functions of one complex variable
and the triangle groups that serve as their monodromy groups. When these
triangle groups are hyperbolic, they act on the unit disk, that is, the complex
1-ball. Infinitely many such groups act discontinuously, and their torsion-free
normal subgroups of finite index define quotients of the complex 1-ball that
are finite coverings of the projective line branched over three points.

In Chapter 3, we study complex surfaces and their coverings branched
along divisors, that is, subvarieties of codimension 1. In particular, we discuss
coverings branched over transversally intersecting divisors. Applying this to
line arrangements in the complex projective plane, we first blow up the
projective plane at non-transverse intersection points, that is, at those points
of the arrangement where more than two lines intersect. These points are
called singular points of the arrangement. This results in a complex surface
and transversely intersecting divisors that contain the proper transforms of the
original lines. Next, we introduce the group of divisor classes, their intersection
numbers, and the canonical divisor class. The Chern numbers ¢{ and c5, as well
as the proportionality deviation, Prop := 3¢, — c?, are then defined.

In Chapter 4, we give an overview of the rough classification of (smooth
complex connected compact algebraic) surfaces. We present two approaches
that, in dimension 2, give the Miyaoka-Yau inequality; ¢; < 3c,, for surfaces
of general type. We only make a few remarks about the first of these, due to
Miyaoka, which uses algebraic geometry. The second, due to Aubin and Yau,
uses analysis and differential geometry. Here we give more details, since we use
the analogous approach to the Miyaoka-Yau inequality for surface orbifolds
in Chapter 6. We also discuss why equality in the Miyaoka-Yau inequality
characterizes surfaces of general type that are free quotients of the complex
2-ball B, that is, orbit spaces for the action of discrete cocompact subgroups
of the automorphisms of B, that have no fixed points.

In Chapter 5 we arrive at the main topic of the book: the free 2-ball
quotients arising as finite covers of the projective plane branched along
line arrangements. The material of this chapter is self-contained and largely
combinatorial. Let X be the surface obtained by blowing up the singular
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intersection points of a line arrangement in the complex projective plane.
Let Y be a smooth compact complex surface given by a finite cover of X
branched along the divisors on X defined by the lines of the arrangement,
that is, by their proper transforms and by the blown-up points, also known
as exceptional divisors. If Y is of general type with vanishing proportionality
deviation Prop, then it is a free 2-ball quotient. In order to find such a Y, we use
a formula for Prop due to T. Hofer. This formula expresses Prop as the sum of,
first, a quadratic form evaluated at numbers related only to the ramification
indices along the proper transforms of the lines, and, second, nonnegative
contributions from each blown-up point. The quadratic form itself depends
only on the original line arrangement. The contributions from the blown-up
points vanish when we impose certain diophantine conditions on the choice of
ramification indices. Next, we seek line arrangements and ramification indices
that make the quadratic form vanish. Initially, we ask of the arrangements that
they have equal ramification indices along each of the proper transforms of
the original lines. For these arrangements, the number of intersection points
on each line is (k 4 3)/3, where k is the number of lines. We then list all
known line arrangements with this property and restrict our attention to
them. Next, we replace the ramification indices by weights that are positive
or negative integers or infinity, and we list all possible weights that satisfy
the diophantine conditions at the blown-up points and also annihilate the
quadratic form. Finally, we enumerate all possibilities for the assigned weights
of the arrangements, under the assumption that divisors of negative or infinite
weight on the blown-up line arrangements do not intersect. When the weight
of a divisor on a blown-up line arrangement is negative, the curves above it
on Y are exceptional and can be blown down. Blowing down all curves on Y
arising from such negative weights, we obtain a smooth surface Y’. When the
weight of a divisor on a blown-up line arrangement is infinite, the curves above
it on Y are elliptic. Letting C be the union on Y’ of all elliptic curves arising
in this way, we derive the appropriate expression for the Prop of the possibly
non-compact smooth surface Y’ \ C. It is known that we cannot have rational
or elliptic curves on a free 2-ball quotient, so this construction is quite natural.
For the line arrangements of Chapter 5, we give the complete list of weights
such that the Prop of Y’ \ C vanishes, meaning that Y'\ C is a free 2-ball
quotient. These weights are all presented in a series of tables in §5.7 at the end
of Chapter 5, except for a few extra cases that are listed in §5.6.1. Throughout
this chapter, we assume that the finite covers of the line arrangements with
vanishing proportionality actually exist. The expression for Prop of Y’ \ C
depends only on the original weighted line arrangement, so we can work with
this assumption; but we still need to show that there are such covers.

In Chapter 6 we justify the existence assumption of Chapter 5. Let X be
the blow-up of the projective plane at the non-transverse intersection points
of a line arrangement. Assign weights—allowed to be positive or negative
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integers or infinity, denoted by n; for the proper transforms D; of the lines, and
denoted by m; for the exceptional divisors E ; given by the blown-up points—
in such a way that the divisors with negative or infinite weights are distinct.
Let X' be the possibly singular surface obtained by blowing down the D; and
E; with negative weight, and X" the possibly singular surface obtained by
contracting the images of the D; and E; on X’ with infinite weight. Let D]’ be
the image in X" of D; with weight n; > 0, and E’/ the image in X" of E ; with
weight m; > 0. The central question of Chapter 6 is the following. When is
X" a (possibly compactified by points) ball quotient X” = T"\ B, for a discrete
subgroup I" of the automorphisms of the ball with natural map B, — X"
ramified of order n; along D}’ and m; along E/? Any normal subgroup I’
of I of finite index N in I, acting on B, without fixed points, gives rise to
a free ball quotient I'"\B, = Y"\ C, as described in Chapter 5, that is a finite
cover of X = I'\ B; of degree N, ramified of order n; > 0 along D] N X{ and
mj > 0along E7 N X{. Such normal subgroups exist due to the work of Borel
and Selberg.

Therefore, we approach the proof of the existence of Y \ C by first showing
the existence of I'. The group I' acts with fixed points, so, in answering this
central question, the language of orbifolds is appropriate. Given the simplicity
and explicit nature of the orbifolds we study, we use instead the related notion
of b-space due to Kato. For the reader seeking a more sophisticated and
general treatment, it is worth learning the basics of complex orbifolds that we
exclude. Roughly speaking, we show that if all the diophantine conditions on
the weights, derived in Chapter 5 to ensure that Prop vanishes, are satisfied,
then there is equality in an orbifold, or b-space, version of the Miyaoka-Yau
inequality, and, by arguments analogous to those of Chapter 4, the space
X is of the form I'\ B, and the map B, — X has the desired ramification
properties described above. To do this, we use the work of R. Kobayashi,
S. Nakamura, and F. Sakai [83], which generalizes the work of Aubin-Yau on
the Miyaoka-Yau inequality to surfaces with an orbifold structure.

There are both related and alternative approaches dating from about the
same time, for example, the approach in the independent work of S. Y. Cheng
and S. T. Yau [27], as well as more modern and more general approaches,
such as in the work of A. Langer [91], [92], to mention just a few important
instances. We choose to base our discussion on the work of R. Kobayashi,
S. Nakamura, and F. Sakai, as it was part of the original notes made with
F. Hirzebruch and it fits well with the presentation of the work of Aubin-Yau
in Chapter 4 as well as with our approach to the material of Chapter 5. The
main point of Chapter 6 is to flesh out the details of the orbifold version of
the Miyaoka-Yau inequality for our particular situation of line arrangements
in the projective plane.

Chapter 7 focuses on the complete quadrilateral line arrangement, and
especially on its relationship with the space of regular points of the system



