# Complex Ball Quotients and Line Arrangements in the Projective Plane

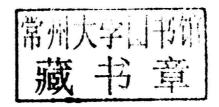
Paula Tretkoff

# Complex Ball Quotients and Line Arrangements in the Projective Plane

#### Paula Tretkoff

With an appendix by Hans-Christoph Im Hof

Mathematical Notes 51



PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD

Copyright © 2016 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire, OX20 1TW

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Tretkoff, Paula, 1957-

Complex ball quotients and line arrangements in the projective plane / Paula Tretkoff.

pages cm. - (Mathematical notes; 51)

Includes bibliographical references and index.

ISBN 978-0-691-14477-1 (pbk.: alk. paper) 1. Curves, Elliptic. 2. Geometry, Algebraic. 3. Projective planes. 4. Unit ball. 5. Riemann surfaces. I. Title.

QA567.2.E44T74 2016

516.3'52-dc23 2015016120

British Library Cataloging-in-Publication Data is available

This book has been composed in Minion Pro

Printed on acid-free paper.  $\infty$ 

and the second second second second

press.princeton.edu

Typeset by S R Nova Pvt Ltd, Bangalore, India Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

## Complex Ball Quotients and Line Arrangements in the Projective Plane

## To the memory of Friedrich Hirzebruch

#### Preface

This book is devoted to a study of quotients of the complex 2-ball yielding finite coverings of the projective plane branched along certain line arrangements. It is intended to be an introduction for graduate students and for researchers. We give a complete list of the known weighted line arrangements that can give rise to such ball quotients, and then we provide a justification for the existence of the ball quotients. The Miyaoka-Yau inequality for surfaces of general type, and its analogue for surfaces with an orbifold structure, plays a central role.

The book has its origins in a Nachdiplom course given by F. Hirzebruch at the ETH Zürich during the Spring of 1996. I (née Cohen) was at that time Directeur de Recherche au CNRS at the Université de Lille 1, and a guest of ETH Zürich. I attended the course, lectured on some of the material on hypergeometric functions, and made the original set of notes for all Hirzebruch's lectures. I also presented related material as a two-semester graduate course at Princeton University during the academic year 2001/2002 while I was Visiting Professor there. The ETH Nachdiplom course notes were subsequently developed and refined by F. Hirzebruch and me during regular visits to the Max Planck Institute in Bonn. I thank ETH Zürich, MPI Bonn, and Princeton University for their support during the preparation of this book.

After working on the book together for some years, F. Hirzebruch and I decided even more additional material seemed desirable and, at that point, F. Hirzebruch asked me to complete the book under my own name. The book entitled *Geradenkonfigurationen und Algebraische Flächen*, Vieweg, 1987, by G. Barthel, F. Hirzebruch, and T. Höfer, served as a valuable resource and reference. This book is in German, and we have mined some of its contents as needed. The present book assumes less background than the earlier book, and we revisit in more detail several of its important subjects. We have also added material not found in that book. For example, we present a more organized list of the possible weights on line arrangements that yield finite covers that are ball quotients, and we devote a whole chapter, rather than just a few pages, to the question of the existence of such ball quotients. Also, we include material on hypergeometric functions.

The book is dedicated to the memory of F. Hirzebruch. I am grateful beyond words for the time and attention he paid to this project amid the many commitments of his important and busy life.

# Complex Ball Quotients and Line Arrangements in the Projective Plane

# Contents

|    | reface                                                                             | 13 |
|----|------------------------------------------------------------------------------------|----|
| 11 | ntroduction                                                                        | 1  |
| 1  | <b>Topological Invariants and Differential Geometry</b> 1.1 Topological Invariants | 7  |
|    | 1.2 Fundamental Groups and Covering Spaces                                         | 10 |
|    | 1.3 Complex Manifolds and Metrics                                                  | 13 |
|    | 1.4 Divisors, Line Bundles, the First Chern Class                                  | 16 |
| 2  | Riemann Surfaces, Coverings, and Hypergeometric                                    |    |
|    | Functions                                                                          | 23 |
|    | 2.1 Genus and Euler Number                                                         | 23 |
|    | 2.2 Möbius Transformations                                                         | 25 |
|    | 2.3 Metric and Curvature                                                           | 29 |
|    | 2.4 Behavior of the Euler Number under Finite Covering                             | 33 |
|    | 2.5 Finite Subgroups of PSL(2, C)                                                  | 34 |
|    | 2.6 Gauss Hypergeometric Functions                                                 | 36 |
|    | 2.7 Triangle Groups                                                                | 41 |
|    | 2.8 The Hypergeometric Monodromy Group                                             | 45 |
| 3  | Complex Surfaces and Coverings                                                     | 47 |
|    | 3.1 Coverings Branched over Subvarieties with Transverse Intersections             | 47 |
|    | 3.2 Divisor Class Group and Canonical Class                                        | 49 |
|    | 3.3 Proportionality                                                                | 54 |
|    | 3.4 Signature                                                                      | 59 |
|    | 3.5 Blowing Up Points                                                              | 61 |
| 4  | Algebraic Surfaces and the Miyaoka-Yau Inequality                                  | 65 |
|    | 4.1 Rough Classification of Algebraic Surfaces                                     | 65 |
|    | 4.2 The Miyaoka-Yau Inequality, I                                                  | 70 |
|    | 4.3 The Miyaoka-Yau Inequality, II                                                 | 73 |
| 5  | Line Arrangements in $\mathbb{P}_2(\mathbb{C})$ and Their Finite Covers            | 85 |
|    | 5.1 Blowing Up Line Arrangements                                                   | 87 |
|    | 5.2 Höfer's Formula                                                                | 88 |

#### viii • Contents

| 5.3 Arrangements Annihilating $R$ and Having                 |     |
|--------------------------------------------------------------|-----|
| Equal Ramification along All Lines                           | 92  |
| 5.4 Blow-Up of a Singular Intersection Point                 | 99  |
| 5.5 Possibilities for the Assigned Weights                   | 103 |
| 5.6 Blowing Down Rational Curves and                         |     |
| Removing Elliptic Curves                                     | 115 |
| 5.7 Tables of the Weights Giving $Prop = 0$                  | 122 |
| 6 Existence of Ball Quotients Covering Line Arrangements     | 126 |
| 6.1 Existence of Finite Covers by Ball Quotients of Weighted |     |
| Configurations: The General Case                             | 128 |
| 6.2 Remarks on Orbifolds and $b$ -Spaces                     | 133 |
| 6.3 $K_{X''} + D''$ for Weighted Line Arrangements           | 135 |
| 6.4 Existence Question                                       | 139 |
| 6.5 Ampleness of $K_{X''} + D''$                             | 140 |
| 6.6 Log-Terminal Singularities and LCS                       | 145 |
| 6.7 Existence Theorem for Line Arrangements                  | 148 |
| 6.8 Isotropy Subgroups of the Covering Group                 | 164 |
| 7 Appell Hypergeometric Functions                            | 167 |
| 7.1 The Action of $S_5$ on the Blown-Up Projective Plane     | 168 |
| 7.2 Appell Hypergeometric Functions                          | 173 |
| 7.3 Arithmetic Monodromy Groups                              | 181 |
| 7.4 Some Remarks about the Signature                         | 186 |
| A Torsion-Free Subgroups of Finite Index                     | 189 |
| A.1 Fuchsian Groups                                          | 190 |
| A.2 Fenchel's Conjecture                                     | 191 |
| A.3 Reduction to Triangle Groups                             | 192 |
| A.4 Triangle Groups                                          | 193 |
| B Kummer Coverings                                           | 197 |
| Bibliography                                                 | 205 |
| Index                                                        | 213 |

#### Introduction

Historical precedent for the results in this book can be found in the theory of Riemann surfaces. Every compact Riemann surface of genus  $g \ge 2$  has representations both as a plane algebraic curve, and so as a branched covering of the complex projective line, and as a quotient of the complex 1-ball, or unit disk, by a freely acting cocompact discrete subgroup of the automorphisms of the 1-ball. The latter result is a direct consequence of the uniformization theorem, which states that the simply-connected Riemann surfaces are the Riemann sphere, the complex plane, and the complex 1-ball.

In complex dimension 2, Hirzebruch (1956) and Yau (1978) showed that the smooth compact connected complex algebraic surfaces, representable as quotients of the complex 2-ball  $B_2$  by freely acting cocompact discrete subgroups of the automorphisms of the 2-ball, are precisely the surfaces of general type whose Chern numbers satisfy  $c_1^2 = 3c_2$ . Here,  $c_2$  is the Euler characteristic and  $c_1^2$  is the self-intersection number of the canonical divisor. Accordingly, the *proportionality deviation* of a complex surface is defined by the expression  $3c_2 - c_1^2$ . This book examines the explicit computation of this proportionality deviation for finite covers of the complex projective plane ramified along certain line arrangements. Candidates for ball quotients among these finite covers arise by choosing weights on the line arrangements such that the proportionality deviation vanishes. We then show that these ball quotients actually exist.

The intention of F. Hirzebruch in the original notes was for the material to be presented in a nontechnical way, assuming a minimum of prerequisites, with definitions and results being introduced only as needed. The desire was for the reader to be exposed to the theory of complex surfaces—and of complex surfaces with an orbifold structure—through the examples provided by weighted line arrangements in the projective plane, with an emphasis on their finite covers which are ball quotients. There was no desire to develop a complete theory of surfaces and orbifolds although relevant references are provided, or to treat the latest developments, or to also survey results in higher dimensions. Instead, the goal was that, on reading the book, the student or researcher should be better equipped to go into more technical or more modern territory if interested. It was felt that the topic of the notes was important enough historically to warrant their appearance. F. Hirzebruch wanted the style of the original notes to be like that of his series of lectures,

and for them to remain readable and conversational; and, even though a lot of material has been added since by me, I have aimed to retain those qualities.

The plan of the book is as follows. In Chapter 1, we collect in one place the main prerequisites from topology and differential geometry needed for subsequent chapters, although, for convenience, pieces of this material are at times repeated or expanded upon later in the book. Even if the reader is familiar with these topics, it is worth his or her while to leaf through Chapter 1 to see what notions and notations are used later.

In Chapter 2, we apply some of the material from Chapter 1 to Riemann surfaces—which are of real dimension 2—by way of a historical and conceptual motivation for the material on complex surfaces. We also discuss in this chapter the classical Gauss hypergeometric functions of one complex variable and the triangle groups that serve as their monodromy groups. When these triangle groups are hyperbolic, they act on the unit disk, that is, the complex 1-ball. Infinitely many such groups act discontinuously, and their torsion-free normal subgroups of finite index define quotients of the complex 1-ball that are finite coverings of the projective line branched over three points.

In Chapter 3, we study complex surfaces and their coverings branched along divisors, that is, subvarieties of codimension 1. In particular, we discuss coverings branched over transversally intersecting divisors. Applying this to line arrangements in the complex projective plane, we first blow up the projective plane at non-transverse intersection points, that is, at those points of the arrangement where more than two lines intersect. These points are called singular points of the arrangement. This results in a complex surface and transversely intersecting divisors that contain the proper transforms of the original lines. Next, we introduce the group of divisor classes, their intersection numbers, and the canonical divisor class. The Chern numbers  $c_1^2$  and  $c_2$ , as well as the proportionality deviation,  $Prop := 3c_2 - c_1^2$ , are then defined.

In Chapter 4, we give an overview of the rough classification of (smooth complex connected compact algebraic) surfaces. We present two approaches that, in dimension 2, give the Miyaoka-Yau inequality;  $c_1^2 \leq 3c_2$ , for surfaces of general type. We only make a few remarks about the first of these, due to Miyaoka, which uses algebraic geometry. The second, due to Aubin and Yau, uses analysis and differential geometry. Here we give more details, since we use the analogous approach to the Miyaoka-Yau inequality for surface orbifolds in Chapter 6. We also discuss why equality in the Miyaoka-Yau inequality characterizes surfaces of general type that are free quotients of the complex 2-ball  $B_2$ , that is, orbit spaces for the action of discrete cocompact subgroups of the automorphisms of  $B_2$  that have no fixed points.

In Chapter 5 we arrive at the main topic of the book: the free 2-ball quotients arising as finite covers of the projective plane branched along line arrangements. The material of this chapter is self-contained and largely combinatorial. Let X be the surface obtained by blowing up the singular

intersection points of a line arrangement in the complex projective plane. Let Y be a smooth compact complex surface given by a finite cover of X branched along the divisors on X defined by the lines of the arrangement, that is, by their proper transforms and by the blown-up points, also known as exceptional divisors. If Y is of general type with vanishing proportionality deviation Prop, then it is a free 2-ball quotient. In order to find such a Y, we use a formula for Prop due to T. Höfer. This formula expresses Prop as the sum of, first, a quadratic form evaluated at numbers related only to the ramification indices along the proper transforms of the lines, and, second, nonnegative contributions from each blown-up point. The quadratic form itself depends only on the original line arrangement. The contributions from the blown-up points vanish when we impose certain diophantine conditions on the choice of ramification indices. Next, we seek line arrangements and ramification indices that make the quadratic form vanish. Initially, we ask of the arrangements that they have equal ramification indices along each of the proper transforms of the original lines. For these arrangements, the number of intersection points on each line is (k+3)/3, where k is the number of lines. We then list all known line arrangements with this property and restrict our attention to them. Next, we replace the ramification indices by weights that are positive or negative integers or infinity, and we list all possible weights that satisfy the diophantine conditions at the blown-up points and also annihilate the quadratic form. Finally, we enumerate all possibilities for the assigned weights of the arrangements, under the assumption that divisors of negative or infinite weight on the blown-up line arrangements do not intersect. When the weight of a divisor on a blown-up line arrangement is negative, the curves above it on Y are exceptional and can be blown down. Blowing down all curves on Y arising from such negative weights, we obtain a smooth surface Y'. When the weight of a divisor on a blown-up line arrangement is infinite, the curves above it on Y are elliptic. Letting C be the union on Y' of all elliptic curves arising in this way, we derive the appropriate expression for the Prop of the possibly non-compact smooth surface  $Y' \setminus C$ . It is known that we cannot have rational or elliptic curves on a free 2-ball quotient, so this construction is quite natural. For the line arrangements of Chapter 5, we give the complete list of weights such that the Prop of  $Y' \setminus C$  vanishes, meaning that  $Y' \setminus C$  is a free 2-ball quotient. These weights are all presented in a series of tables in §5.7 at the end of Chapter 5, except for a few extra cases that are listed in §5.6.1. Throughout this chapter, we assume that the finite covers of the line arrangements with vanishing proportionality actually exist. The expression for Prop of  $Y' \setminus C$ depends only on the original weighted line arrangement, so we can work with this assumption; but we still need to show that there are such covers.

In Chapter 6 we justify the existence assumption of Chapter 5. Let X be the blow-up of the projective plane at the non-transverse intersection points of a line arrangement. Assign weights—allowed to be positive or negative

integers or infinity, denoted by  $n_i$  for the proper transforms  $D_i$  of the lines, and denoted by  $m_i$  for the exceptional divisors  $E_i$  given by the blown-up points in such a way that the divisors with negative or infinite weights are distinct. Let X' be the possibly singular surface obtained by blowing down the  $D_i$  and  $E_i$  with negative weight, and X'' the possibly singular surface obtained by contracting the images of the  $D_i$  and  $E_j$  on X' with infinite weight. Let  $D_i''$  be the image in X'' of  $D_i$  with weight  $n_i > 0$ , and  $E''_i$  the image in X'' of  $E_j$  with weight  $m_i > 0$ . The central question of Chapter 6 is the following. When is X" a (possibly compactified by points) ball quotient  $X'' = \overline{\Gamma \setminus B_2}$  for a discrete subgroup  $\Gamma$  of the automorphisms of the ball with natural map  $B_2 \to X''$ ramified of order  $n_i$  along  $D_i''$  and  $m_j$  along  $E_j''$ ? Any normal subgroup  $\Gamma'$ of  $\Gamma$  of finite index N in  $\Gamma$ , acting on  $B_2$  without fixed points, gives rise to a free ball quotient  $\Gamma' \setminus B_2 = Y' \setminus C$ , as described in Chapter 5, that is a finite cover of  $X_0'' = \Gamma \setminus B_2$  of degree N, ramified of order  $n_i > 0$  along  $D_i'' \cap X_0''$  and  $m_j > 0$  along  $E_j'' \cap X_0''$ . Such normal subgroups exist due to the work of Borel and Selberg.

Therefore, we approach the proof of the existence of  $Y' \setminus C$  by first showing the existence of  $\Gamma$ . The group  $\Gamma$  acts with fixed points, so, in answering this central question, the language of orbifolds is appropriate. Given the simplicity and explicit nature of the orbifolds we study, we use instead the related notion of b-space due to Kato. For the reader seeking a more sophisticated and general treatment, it is worth learning the basics of complex orbifolds that we exclude. Roughly speaking, we show that if all the diophantine conditions on the weights, derived in Chapter 5 to ensure that Prop vanishes, are satisfied, then there is equality in an orbifold, or b-space, version of the Miyaoka-Yau inequality, and, by arguments analogous to those of Chapter 4, the space  $X''_0$  is of the form  $\Gamma \setminus B_2$  and the map  $B_2 \to X''_0$  has the desired ramification properties described above. To do this, we use the work of R. Kobayashi, S. Nakamura, and F. Sakai [83], which generalizes the work of Aubin-Yau on the Miyaoka-Yau inequality to surfaces with an orbifold structure.

There are both related and alternative approaches dating from about the same time, for example, the approach in the independent work of S. Y. Cheng and S. T. Yau [27], as well as more modern and more general approaches, such as in the work of A. Langer [91], [92], to mention just a few important instances. We choose to base our discussion on the work of R. Kobayashi, S. Nakamura, and F. Sakai, as it was part of the original notes made with F. Hirzebruch and it fits well with the presentation of the work of Aubin-Yau in Chapter 4 as well as with our approach to the material of Chapter 5. The main point of Chapter 6 is to flesh out the details of the orbifold version of the Miyaoka-Yau inequality for our particular situation of line arrangements in the projective plane.

Chapter 7 focuses on the complete quadrilateral line arrangement, and especially on its relationship with the space of regular points of the system