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Preface

Representation theory and character theory provide major tools for the
study of finite groups. Complex representations and their characters were
first studied nearly 100 years ago by Frobenius, and his theorem on
transitive permutation groups was the first major achievement of the
theory; it remains to this day, along with Burnside’s p°q®-theorem, one of
the highlights of any first course on representation theory. Indeed, while
Burnside’s theorem now admits a purely group theoretic proof, Frobenius’
theorem remains untouched by non-character-theoretic methods.

Both of these results may be regarded as nonsimplicity criteria. The study
and application of character theory, since Brauer proposed a systematic
programme to classify the finite simple groups at the Amsterdam Inter-
national Congress in 1954, cannot be divorced from the classification itself.
Although purely group theoretic methods have dominated the major part
of that work which took place between 1970 and 1980, the classification
could never have been carried out (and, indeed, would have been stillborn)
without the early progress made using character theory. The reason for this
is quite simple. The goal is always to obtain global information from local
information (that is, information about the whole group from information
about various subgroups). However, the process is inductive; when a group
is in some sense big enough, there is enough interaction between the various
subgroups to progress from that interaction by group theoretic means, but
in small configurations the information available is so tight (and the
situation which occurs in the proof of Frobenius’ theorem is a perfect
example) that what Brauer referred to as the ‘arithmetic’ properties of
groups, namely their characters, have to be studied. Thus characters have
played an indispensable role in the study of certain permutation groups and
in the characterisation of groups with Sylow 2-subgroups of small rank
(possibly zero), and this will remain necessary in the context of the current
revision project.

There have been two major strands to this work; on the one hand, there is
Brauer’s theory of blocks of characters, arising out of his work on modular
representation theory, and, on the other, the theory of exceptional
characters developed by Suzuki, Feit and others, as a direct attempt to
generalise the original ideas of Frobenius. The aim of this book is to give a
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comprehensive and self-contained account of the latter, with all the
refinements and improvements which are now possible.

The origin of this book lies in graduate lectures that I gave in Oxford over
the years 1971-3 and again in 1976-8, together with other courses given
since. In the original courses, I covered both the ordinary (complex) theory
and modular theory but, with an exception on which I shall comment
below, I have concentrated here on those areas of ordinary representation
theory and character theory which should occur in any graduate course or
which will serve as an introduction for those who wish to study their
application to the classification of simple groups, and I have included a
substantial amount of material which I did not put into any of the lectures,
and some of which is far more recent. In a book of this length, one cannot
hope to cover all topics and I have made no such attempt; for example, there
is no mention of the character theory of soluble groups or the symmetric
groups, nor any of Schur indices beyond the basic Frobenius—Schur index.
On the other hand, I have written this book very much for the group
theorist so that, for example, the first chapter contains a considerable
amount of general material that is relevant to the application of represent-
ation theoretic methods to ‘internal’ group theory, and this book contains
sufficient for anyone wishing to go on to study the character theory of the
odd order paper of Feit and Thompson, either in the original form or as
revised by Sibley.

This book should be accessible both to graduates and to higher level
undergraduates, and the range of topics and exercises in the first two
chapters which cover basic representation theory and character theory will
have such readers in mind, though a judicious choice of material for
undergraduate use might be desirable. Only a very basic knowledge of
group theory and more general algebra is assumed, though a more
sophisticated background would be valuable to see some of the examples
and applications in their full perspective; unavoidably, some of the material
in these chapters is there for later application. I have, however, tried to
prepare the reader for study in areas other than those covered later; there is
sufficient background from the representation theory side, for example, to
study the Deligne—Lusztig theory of the ordinary characters of groups of
Lie type. Also, in the final section of Chapter 2, I have included a brief
discussion of the application of the character theoretic methods which are
central in this book to the Inverse Galois problem.

After the first two chapters, our treatment becomes more specialised. In
Chapter 3, we examine Suzuki’s theory of exceptional characters and then,
in Chapter 4, Feit’s theory of isometries and coherence. Sibley’s refinements
of Feit’s work are discussed here and they are applied to simplify two major
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applications of character theory; in Section 4.5, we shall establish the
nonsimplicity of CN-groups of odd order following Suzuki’s treatment of
CA-groups of odd order, and, in Section 4.6, we shall give a unified
treatment of the reduction theorems for Zassenhaus groups which were
originally proved by Feit and by It6. In Chapter 5, which is self-contained,
Brauer’s characterisation of characters is discussed; this topic may today be
included in any basic course and can be read immediately after Section 2.3,
but here is the appropriate place in the context of this book since we wish to
empbhasise its role in the construction of isometries other than that arising
directly from character induction as in the Suzuki theory. This work takes
place in the final chapter.

It is in this final chapter that I make the one exception to self-
containment. Block theory is needed for Reynolds’ work and for the more
recent work of Robinson on isometries, for which I have given a unified
treatment. I had intended just to state the most basic results required but, as
I was writing, I found that all but Brauer’s second and third main theorems
(which are only stated) can be proved by methods already discussed at
length, and I have therefore indulged in a somewhat unusual approach to
block theory. That this should prove possible did not come as a surprise. |
have long felt that Brauer’s method of columns was somehow the dual of
Suzuki’s method of exceptional characters (and this is implicit in work of
Walter and Wong), and I first gave a proof of the nonsimplicity of groups
with homocyclic Sylow 2-subgroups of rank 2, replacing the use of Brauer’s
method of columns by an isometry constructed using Brauer’s characteris-
ation of characters, in my lectures; what did surprise me was that I could
also construct the principal 2-block for groups with dihedral Sylow 2-
subgroups by the same approach. This has allowed me to give in a natural
way Suzuki’s proof of the Brauer—Suzuki theorem on groups with an
ordinary quaternion Sylow 2-subgroup.

The link is Brauer’s characterisation of characters, and I have chosen to
give the Brauer—Tate proof rather than the shorter proof of Goldschmidt
and Isaacs since I believe that it may give greater insight into the
relationship between character ring methods and Brauer’s methods with
modular characters. My one regret is that I cannot justify this comment
explicitly; although modular representation theory is very much in vogue
today, I would hope that Brauer’s second and third main theorems will one
day submit to non-modular proofs.

Finally I turn to acknowledgements. I owe my own original interest in
character theory to some second year undergraduate lectures ‘advertising’
algebra which werc given in Oxford by Martin Powell some 25 years ago
and to the course given by Graham Higman when I was first his research
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student; Section 3.4, in particular, reflects this upbringing, although
Theorem 3.17 turns out to have a new application in my treatment of
Zassenhaus groups! Looking back to those formative years, I should also
thank Michio Suzuki who sent me a number of his papers, one of which
contains the marginal note, ‘More work is needed’.

For the metamorphosis of my lectures into this book, I would like to
thank several generations of students in Oxford (and one at CalTech) who
have unearthed many unclear points (and a few howlers). Jonathan Alperin,
Peter Landrock and, in particular, Geoffrey Robinson have read sections of
the manuscript at various stages, and I am grateful for all their comments. It
would also be appropriate to thank Jack Cowan who introduced me to the
Macintosh; without it, I would not have been able so easily to send draft
sections around for comment and make almost constant changes to the
manuscript. I should also like to thank the Universities of Aarhus, Chicago
and Essen for their hospitality and support at various times while this book
was being written.

Finally I should like to thank all those at the Cambridge University Press
for their assistance — and, in particular, David Tranah for his patience.

MICHAEL COLLINS
Oxford
February, 1989.



Contents

Preface ix
1 General representation theory 1
1 Basic concepts 1
2 Group rings, algebras and modules 6
3 Complete reducibility 12
4 Absolute irreducibility and the realisation of
representations 15
5 Semisimple algebras 23
6 Clifford’s theorem 27
7 Induced representations 32
8 Tensor induction and transfer 42
2 Complex characters 48
1 Basic properties 48
2 Burnside’s p°q®-theorem 61
3 The character ring: restriction and induction 63
4 Frobenius’ theorem 69
5 Induction from normal subgroups 73
6 Frobenius groups 77
7 The special linear groups SL(2,2") 80
8 The Frobenius—Schur indicator 85
9 Some counting methods 90
10 A characterisation of the groups SL(2,2") 99
11 Rigidity in finite groups 104
3 Suzuki’s theory of exceptional characters 107
1 Closed and special subsets 107
2 Suzuki’s algorithm 115
3 The Brauer—Suzuki theorem 117
4 Strongly self-centralising subgroups 120
5 CA-groups of odd order 128
6 Groups with self-normalising cyclic subgroups 132



viii

4 Coherence and exceptional characters

1

w AW

Coherence

Frobenius groups as normalisers of Hall subgroups
Sibley’s theorems

CN-groups of odd order

Zassenhaus groups

5 The characterisation of characters

1
2
3
4

The structure of the character ring
The proofs of the theorems

The focal subgroup theorem

A splitting field

6 Isometries

1
2
3

4
5

6
7

Dade’s isometry

Block theory

Groups with Sylow 2-subgroups isomorphic to
Z,.x 2,

Blocks and exceptional characters

Principal 2-block of groups with dihedral Sylow
subgroups

Groups with quaternion Sylow 2-subgroups
Some further isometries

Appendix: Glauberman’s Z*-theorem

References
Index of notation
General index

Contents

137
137
143
153
164
168

175
176
178
183
184

187
188
196

205
211

216
218
221

230
234

237
239



1

General representation theory

1 Basic concepts

Let G be an arbitrary finite group' and let K be an arbitrary field. Then
a (linear) representation p of G over K is a homomorphism
p:G - GL(V)

where V is a finite dimensional vector space+ over K and GL(V) is the
group of nonsingular linear transformations of V into itself. If we are
already given the vector space V, then we may refer to p as a representation
of G on V. Although we shall normally write mappings on the right, we
shall write p(g) rather than gp since we shall never consider compositions
of representations; also, for ve V, we shall write vg for v-p(g) if there is no
risk of ambiguity.

If the dimension of V is n, we may choose a basis for V and identify
V with the space K" of n-tuples over K; then we may regard p as a map
from G into GL(n, K), the group of nonsingular n x n matrices over K.
The precise map so obtained depends on the choice of basis; thus a
homomorphism

p: G- GL(n, K)

should be called a matrix representation. However, in a way which will
be made precise shortly, matrix representations obtained by taking
different bases are similar, and we shall move freely between represen-
tations on vector spaces and the corresponding matrix representations.

We shall study representations with two particular purposes in mind.
The first is that a representation gives us something concrete, namely a
group of linear transformations or matrices, to which the methods of linear
algebra may be applied. The second is that by studying the values of the
traces of the matrices p(g), it may be possible to use the arithmetic
properties of the field K to deduce information about an abstract group
G. This is known as character theory, and much of this book will be de-
voted to this aspect in the case that K is the field of complex numbers C.

' Throughout this book, groups will always be finite, with the obvious exception of groups
of linear transformations, and vector spaces will be finite dimensional. However, most of
the definitions of this section, although little of the subsequent theory, can be extended
without these restrictions.



2 General representation theory

Such trace values are known as (ordinary) characters. However, in this
chapter we shall develop the basic representation theory in the first
spirit and in a form more general than that needed purely for character
theory.

Examples (Groups and fields are arbitrary unless otherwise stated.)

1. Let V be a one-dimensional vector space over K. The map
g—1ly

for all geG is the trivial representation of G over K.

2. Let G be a group which acts as a group of permutations on a finite
set Q, where Q = {e,,...,e,}. Let V be a vector space of dimension n over
K with a basis {v,,...,v,}. For geG, let n, be the linear transformation
on V defined by the action on basis vectors
ngv;—v; ifand only if g:e;—e;.

Then the map n:G—GL(V) defined by n(g)=m, for all geG is a
permutation representation of G on V. Notice that the corresponding
matrix representation (with respect to the basis {v,,...,v,}) is given by
permutation matrices.

3. Take Q=G in Example 2 and define a permutation action by the
mappings

g: X —Xxg
for all x,geG. The associated representation is called the right regular
representation of G.

4. Let N be a normal subgroup of G, and suppose that p is a representation
of G/N. The mapping

p:9—pgN)
for all geG defines a representation on G. This representation is called
the inflation of p.
Conversely, if o is a representation of G such that N lies in the kernel
of o, then the mapping

:gN —a(g)
defines a representation of G/N.
5. If K is regarded as a one-dimensional vector space over itself, then
multiplication acts as a linear transformation. Thus any homomorphism

from a group G into the multiplicative group of K may be viewed as a
representation. In particular, if p is a representation of G over K, then
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the mapping
g —det(p(g))
for all geG is a one-dimensional representation.

6. Let G be a cyclic group of order n and let g be a generator of G. Let
w be an nth root of unity in K (not necessarily primitive). Then the mapping
Puid =@
defines a representation of G. Conversely, every one-dimensional re-

presentation of G is similar to a representation of this form.

7. The alternating groups A, and A5 and the symmetric group S, are
isomorphic, respectively, to the rotation groups of the regular tetrahedron,
icosahedron and cube. By taking an orthonormal basis for R?, these
isomorphisms lead to natural representations of the three groups by real
orthogonal 3 x 3 matrices.

We shall now introduce some basic terminology. Let G and K be, as before,
arbitrary and let p be a representation of G on a vector space V over K.
The dimension dimy(V) is called the degree of the representation p and
will be denoted by deg p. If the kernel, ker p, of p is trivial, then p is
faithful. If U is a subspace of V which is invariant under p(g) for all geG,
then U admits G, or is G-invariant. If V #0 and the only G-invariant
subspaces of V are 0 and V itself, then p is irreducible; otherwise p is
reducible. If V can be written as the direct sum of two nonzero G-invariant
subspaces, then p is decomposable; otherwise p is indecomposable.

It follows, trivially, that an irreducible representation is indecomposable.
The converse is true provided that the characteristic of K does not divide'
the order of G as we shall see in Section 3, but this need not be so in
general. For example, a two-dimensional representation of the additive
group of Z, over Z, is given by

(o 1)
t— .
0 1

and this is indecomposable but not irreducible: the subspace spanned by
the second basis vector is invariant, but not complemented.

Suppose that p, and p, are two representations of G over K on vector
spaces V, and V, respectively. Then p, and p, are said to be equivalent
if there exists an isomorphism a: ¥, = V, such that

p2(g)=06"'p,(g)s for all geG;

we shall write p, ~ p,, or p; ~xp, if we wish to emphasise the field K.

"This will always be understood to include the case that char K = 0.
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Visibly, this defines an equivalence relation on the representations of a
group (over a fixed field), and by a set of distinct representations of a
group, we shall always mean a collection of inequivalent representations.

If V,=V,, then this definition can be applied to two different
representations of G on V; also, if p is a representation of G on V and p,
and p, are the associated matrix representations with respect to different
bases of V, then immediately p, and p, are equivalent. In this case, there
exists a nonsingular matrix X such that

p2(9)=X""pi(g)X
for all geG, and we say that p, and p, are similar.

Exercises

1. Show that the derived group G’ of a group G lies in the kernel of
any representation of G of degree 1. Deduce that, if p: G - GL(n, K)
is a matrix representation of G, then p(g)eSL (n, K) whenever geG'.

2. Let p, and p, be equivalent representations of a group G. Show that,
whenever gegG, the linear transformations p,(g) and p,(g) have the
same minimal and characteristic polynomials. If g is an element of
order n, show that the minimal polynomial of p,(g) divides x" — 1.

3. Let p be a representation of a group G over an algebraically closed
field K whose characteristic does not divide |G|. If g is a fixed element
of G, show that there exists a basis with respect to which p(g) has a
diagonal matrix.

4. Let G be a finite abelian group and let K be an algebraically closed
field of characteristic not dividing |G|. If G has a representation on
a vector space V over K, show that there exists a basis for V' with
respect to which every element of G is represented by a diagonal
matrix. Deduce that every irreducible representation of G over K
has degree 1.

5. Let G and K be as in Exercise 4 and regard the irreducible
representations as maps from G to K. Suppose that G has a
decomposition as the direct product of cyclic subgroups generated
by elements g,,...,g,. Show that an irreducible representation p of
G is determined by its values on the elements g, ,..., g, alone. Deduce
that the number of distinct irreducible representations of G over K
is |G|.

Show that the set of distinct irreducible representations forms an
abelian group G* under composition defined by

(p1P2)(g) = pi(9) p2(g) for all geG,
and that G* is isomorphic (as an abstract group) to G.
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6.

Show that an irreducible representation of a cyclic group G of
prime order p over a field of characteristic p is trivial. By considering
the possible Jordan canonical forms for a linear transformation of
order p, determine a complete set of inequivalent indecomposable
representations of G over a field of characteristic p.
Determine the irreducible representations of an arbitrary p-group
over a finite field K of characteristic p.
[Hint. Show that the subgroup of upper triangular matrices in
GL(n,K) is a Sylow subgroup, where n is the degree, and apply
Sylow’s theorem.]
Let G be the dihedral group D,, of order 2n, the group of symmetries
of a regular n-gon. Then G has a presentation
G={xy|x"=y?=1y 'xy=x"">.

Suppose that n is odd. Show that G’ = {x ), and hence determine the
(two) one-dimensional representations of G over C.

Use Exercises | and 4 to show that, if p:G—->GL(2,C) is a
two-dimensional irreducible complex representation of G, then p ~ p,

where
) (w 0 >
Xx)=
P 0 w-!

and w is a nonidentity nth root of unity. Determine which matrices
of order 2 can invert p,(x), and hence show that p, ~ p, where

0 1
p1(x)=p,(x) and pz(y)=<] 0>.

Deduce that the number of inequivalent irreducible complex
representations of G of degree 2 is 3(n — 1).

[Notice that 3(n — 1)-22 + 2-1% = 2n: see Exercise 17 of Section 2 and
also Corollary 20 (i11).]

Carry out the corresponding analysis to Exercise 8 when n is even.
[Note that, in this case, G’ = {(x2).]

Let G be the generalised quaternion group of order 2"*! (n > 2) which
has a presentation

g=<xy|lx*" =1y =x¥""y Ixy=x""1).
Show that there is a complex representation p:G—GL(2,C) for

which
w 0 0 -1
p(X)—<0 wq) and p(y)=(1 0>

where w is a primitive 2"th root of unity and that p is faithful and
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irreducible. Show also that every element of G is represented by a
matrix in SL(2,C), and deduce directly that G contains a unique
involution (element of order 2).

In Example 7, use geometrical considerations to show that the
representations defined there are irreducible.

Let G be a group, and define an action of G as a group of permutations
on itself by g: x — g~ 'x. Show that this gives rise to a representation
over any field, called the left regular representation.

Show that, if p and ¢ are similar matrix representations of a group
G over a field K, then tr(p(g)) = tr(o(g)) for all geG.

Show also that tr(p(g)) = tr (p(h)) whenever g and h are conjugate

elements in G. (This says that we have defined a class function on G.)
[tr denotes the trace of matrix: if 4 =(a;;), then trA=73;a;.
For each of the groups 4,, A5 and S, determine the value of tr(p(g))
for a representative of each conjugacy class, where p is the three-
dimensional real representation defined for each of the three groups
in Example 7.

2 Group rings, algebras and modules

Let G be a finite group and let p be a representation of G on a vector
space V over a field K. Then the K-linear combinations of the linear
transformations p(g) for ge G form a subring of the full ring £ (V) of linear
transformations of V. The vector space V can be given the structure of a
right module over this subring. We shall formalise this, but make our first
definition more general.

Let G be a group and let R be a commutative ring with identity. Then

the group ring RG consists of the set of all formal sums

Z a,g9 (a,eR)

geG

together with the binary operations

Z a,g + Z b,g = Z‘:; (a, + ba)g (a, byeR)
ge

geG geG

() (2)- E(z- )
geG heG geG \ heG
Y (agbi)(gh)

g.heG

where gh is the group product in G. It is a straightforward calculation to
verfiy that RG is an associative ring with identity. If R is a field K, then
KG has the structure of a vector space over K as well as that of ring. So



