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OBJECT-ORIENTED PROGRAMMING. See Languages, object-
oriented.

OFFICE AUTOMATION

Office work is of two distinct sorts: subject and overhead. The
subject work addresses the business of the organization run-
ning the office: for a doctor’s office, this includes medicine (e.g.,
diagnosis, treatment) and scheduling (maintaining an ap-
pointment calendar); for a sales office, order maintenance,
delivery scheduling, compensation, and order forecasting; for
an insurance company, financial planning; and for an oil com-
pany, geology. In contrast, the overhead is that work done in
the process of “running” the office: this concerns people (hir-
ing, firing, paying, directing), physical arrangements (space,
desks, chairs), communication (letters, phones, meetings), bu-
reaucracy (forms, policies, procedures), and organization
(managing).

Subject Domains

The domains of subject work cover all of the world’s business, a
detailed discussion of which is beyond the scope of this article.
However, some of these domains are associated more directly
with offices, because they appear primarily in office contexts.
For example, expert systems (qv) for financial planning, insur-
ance underwriting, legal document preparation, inventory
control and sales territory management are all domains tradi-
tionally carried out in offices in which Al systems are being
used.

Such “expert systems” are most attractive in areas where
experts are few, but many are needed (financial advising, in-
surance underwriting, machinery diagnosis, exploratory geol-
ogy). Here the expense of an expert system can be justified as
enabling less expert people to do the job. Some of the current
excitement over Al comes from its notable successes in a num-
ber of these domains, particularly ones with high payoff for
better answers.

Recently, systems have become available for both main-
frames and, more interesting, for personal computers (1),
which deliver Al-program construction techniques to nontech-
nical “users.” These provide environments for creating rule
sets which potentially capture a domain of interest, and an
interpreter for running that rule set on descriptions of particu-
lar cases. Sometimes, these construction environments also
provide tools for creating attractive user interfaces to the ex-
pert systems thus constructed. As a result, Al is playing an
increasing role in office systems by acting as the technological
base for their construction, making them faster to build and
modify and accessible by those lacking the command of more
traditional programming practice.

Al programs are not unique here. The very characteristics
which make Al-based programs attractive in offices are those
which have made word-processing, spreadsheets, and data-
bases attractive: they can be quickly changed and the func-
tionality of the system can be left in the hands of the inter-
ested user. In fact, this responsiveness often makes the
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resulting systems very responsive to the needs of their (often
very specific) domains. The abstractions of those domains ap-
pear (unusually uninterpreted) in the systems. Therefore, to
an observer, they often appear to understand their domains
very well. These similarities add fuel to the debates concern-
ing the definition of AL

Routine and Nonroutine Activity

The fundamental fact about offices is that they are inherently
composed of people. People make up an office because there is a
changing environment within which the parent organization
must function. To do this, the people of the organization must
constantly be “making sense” of that world, interpreting
themselves and the organization in that context.

Since machines cannot sense that world, they cannot inter-
pret it. To the extent that an interpretation can be settled
upon, and conveyed to the machine, and that interpretation
made to apply for many cases, the machine can be used to
handle the growing volume of transactions which make up
modern business. To support this, it is necessary that people
preprocess the varied world into input expressed in the terms
of the chosen interpretation and reinsert through interpreta-
tion the machine’s output back into that world. This leads to
segregating office work into the routine (for machines) and the
nonroutine (for people). Thus “office automation” only auto-
mates the office in the sense that it transforms the view of
office work to enable automation (computers) to play a role.

From this viewpoint, the role of Al-based programs in of-
fices is not significantly different from that of more traditional
office computer systems. The Al-based programs being used in
offices, while often improvements over less flexible traditional
programs, are still incapable of being really responsive to the
world in which they are embedded. On the whole technologies
are unaware even that there is a situation to be made sense of.
Beyond that, they are not capable of conceiving that the char-
acteristics which they address need to be augmented or modi-
fied, much less of determining, from confrontation with the
actualities of a presented situation, either the nature or the
details of those changes. Thus the systems do not work well
when used beyond the limits of their expertise. Indeed, they do
not as yet have much sense of their own limits (the judgment
of which even people find difficult).

Thus in the end, people must interpret these systems to the
world. Therefore, the impact of Al is, at most, to change the
boundary between the routine and the nonroutine and make
that boundary more maleable, but it does not remove it: the
essential office, in which people address an ever-changing
world, remains unchanged.

Running the Office: Overhead Domains.

Consider now the overhead of the office, that work which is
quintessentially “office work.” The office is a sociotechnical
environment made up of many systems interacting: physical,
technical, intellectual, social, bureaucratic, organizational.
The task of an office worker is to do whatever is necessary to
achieve certain ends within the organization, with those ends



involving other people, taking place in certain physical loca-
tions, with certain technical assists. The organization’s goals
concern business, but also include legality (2), and responsibil-
ity (3,4). Many of these goals are unarticulated. Office work is
always changing. The mechanisms and agreements set up by
people to get the job done are highly individual and specific.
They must be easy to set up and dismantle, often being active
for just minutes (“Answer the phone while I make a copy, will
you?”). Office work often has a large social component. As an
important example, consider the role of a secretary: to catalyze
and support communication for the people in the office with
each other, the organization and the world.

The account just given of the separation into routine and
nonroutine is particularly applicable to office overhead work.
Further, application of computers to this domain has been
made more difficult by unrealistic views of this work, views
which see it as much more routine than it is. The perception of
regularity in these views is achieved by looking too narrowly
at what is happening. Two good examples are in the domains
of flow of paper work and calendars.

Bureaucracy presents the picture of an office as a place
where forms flow from worker to worker in a pattern specified
by “office procedures.” A number of research efforts accepted
this apparent regularity and attempted to build systems which
would aid in the process, either by modelling it for purpose of
analysis (5,6), or by supporting it for purpose of reducing the
load on workers in remembering and tracking the flow of “pa-
per” (6,7,8). These efforts were not highly successful because
they are based on invalid assumptions about the flow of paper
in an office: The set of procedures specifying flow is only one of
the factors determining the movement of paper in the office,
and the others were not addressed by the systems. Moreover
the procedures themselves are only a surface manifestation of
a set of underlying goals which the paper flow, indeed the
paper itself, is a device for achieving (9).

People in offices use calendars to plan their time. Calendar
systems have been built to help people with this task. They
have recognized that an important part of this is to help with
the coordination required for people to arrange meeting times.
These systems have not been generally accepted because they
look at the use of calendars too narrowly. First, people move
about, and an immobile calendar is simply not acceptable (10).
More interesting, because a calendar represents a person’s
commitments, it also represents priorities, and this is highly
personal and contextually sensitive information. Conse-
quently the coordination of meeting times is not a matter of
simply finding corresponding available slots in various calen-
dars, but rather is a matter of negotiating, which often turns
on complex social and organizational power relationships
among those concerned.

All this is not to say that computers and Al will not address
these and other domains comprising office overhead work. In-
deed, forms and calendar systems have already played an im-
portant part in supporting the work done in offices. However,
to achieve this, they will have to be based on realistic views of
office work. The niceties of the various interactions, particu-
larly the social interactions, are well out of reach of today’s Al
technology. And although more easily changed than tradi-
tional programs, they still cannot change as fast as the office
does. Therefore even Al computer systems are best viewed as
being in that part of the office which handles the routine part
of the work.
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Office Educator: A New Role for Al Systems

One advantage of Al technology over traditional computer sys-
tems is that the knowledge about its application domains is
made explicit. Thus Al enables a major new role for computer
technology within offices: that of educator and communicator.
Through Al applied as an adjunct to other systems, both tech-
nological and human, people in offices can better come to
understand these complex multistructured environments.
Through understanding they can gain better command of
them. In addition, through this improved command, Al can
even enable new environments which are simply not possible
without it. More generally, Al can enable changed relation-
ships between office workers and their environments.

It should be noted that this new role for Al is not confined to
the office. Explicit knowledge will support the educator’s role
wherever Al is used. However, because offices are a very com-
mon workplace in today’s world, AI's role as educator may be
more visible to a large nontechnical audience in the office
than elsewhere.

The rest of this article discusses four aspects of the office
environment concerning which AI may educate: technology,
communications, information domains, and the organization
itself. This framework provides a perspective on the AI work
that has already been done in office systems. Each section
indicates how Al systems can provide people with better un-
derstanding and command of their environments.

Understanding Machines

Office machines are becoming more complex. Text editors are
difficult to learn (11); manuals for office systems are imposing,
even copiers are the subject of study (12). The utility of these
machines is limited less by what their developers can provide
than by what their users can understand.

A primary role for Al in the offices, then, is to enable better
user interfaces. Training tutorials (13,14) can introduce people
formally to the machine. Situated online help (15) and intelli-
gent interfaces can assist in the actual use. The studies of
what it is to interact with a machine (12) are showing the need
for the machine to be able to consider itself as a player in the
interaction, and to use its understanding of the interaction
itself as a basis for reasoning about that interaction. The work
already done on reflection and introspection, reasoning, and
repair (16) will be important in achieving this.

One of the most difficult things about the new machines is
that they are software-based. The culturally provided way of
understanding machinery (as the interaction of comprising
subparts) provides no access to this technology. Simulations of
the machine while it is running can provide subtle (even en-
joyable) support for mental models of the machine which will
support reasoning about it (17).

New paradigms for the control of the interaction between
user and computer system are also enabled by Al For exam-
ple, the work on ONCOCIN (see Medical advice systems) in-
cludes exploration of partitioning the responsibility: the user
(in this case a doctor treating patients with drugs as part of a
medical experiment) is responsible for the dosages given to the
patient; the machine is responsible for the acceptibility of the
dosages given for use in research on treatment methods. To
achieve these new styles of interaction between user and ma-
chine, the machine must educate the user in the role that they
are to play with respect to the machine.
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Learning is often best done in a hands-on, “learn through
doing” fashion. To support this, the environment must encour-
age exploration, most particularly by rendering errors hard to
make inadvertently or painless to recover from. Al technology
has led the way in showing how to do this (18). This attitude
will be required by all users, since “closed” systems which can
be completely learned will become less and less the rule. A
complementary need is to develop in users an attitude that
admits partial, incomplete, possible even wrong, understand-
ing of the system as an acceptable state of knowledge: the
“purposes at hand” determine what is needed. Online help
systems carry this message; dynamically modifiable ones
would further it.

Finally, that machines must suit many different styles of
usage will require that they be “tailorable” to individual
needs. This tailoring can be done explicitly (through specifica-
tion) or implicitly (e.g., by example). Al can help with each.
Explicit specification requires models of the machine and how
specification can change it. Tailoring by example requires pat-
tern generalization and recognition (19).

Understanding Communications

Communications are central to running an office. Indeed com-
munications are the primary subject domain for people like
secretaries. Al is beginning to play a role in helping with
electronic mail, through aid with addressing (20), with select-
ing recipients (21), and with sorting mail when received. Voice
mail and integrated telephone systems are being explored.

Although these roles for AI will be important, the more
profound effects of AI will be in helping people understand the
office communication patterns in which they are involved. To
large measure, people’s knowledge of communications systems
is tacit. Al can educate directly by making this information
explicit. This should include not only details of the technology
(e.g., the need to use protection mechanisms, and the ability to
find the person who can supervene them) but also the social
mores associated with using it (22) (e.g., who may use a distri-
bution list for what purpose; and expectations, such as how
soon messages must be answered, and the social implications
of not meeting these expectations). Al can provide descriptions
of the communications media, both inside and outside the ma-
chine, which will permit users not only to answer the ques-
tions concerning the usage of the media, but also to know what
questions to ask. Further, with the availability of this infor-
mation to the communications systems themselves, Al can
support the creating of agents for dealing with situated prob-
lems (e.g., knowledge-based descriptions of standing-orders)
(23).

Educating indirectly, Al can change the very nature of the
communications media, providing new opportunities in the
office. For example, electronic mail is a new medium with a
new set of social values. In particular, it is more formal than
the telephone and less formal than office memos. In creating
messages, the impact of these felicity conditions on formality
is subtle. Having spelling and grammar checkers available
may reduce fears associated with sending a message in haste.
On the other hand, it may be important to also provide mecha-
nisms which guarantee that a message looks hurried, thereby
communicating to the receiver the intent of the sender. Al-
though powerful and potentially very useful, the full impact of
such Al systems on communications in the office must be stud-
ied with care.

Understanding Information Domains

One of the cornerstones of Al technology is the explicit repre-
sentation of the ontology of its application domains. (This is
the “knowledge base” of the domain, in terms of which the
“data” of the domain is understood and encoded.) In addition to
supporting the application, this explicit encoding of domain
ontology can be used to teach the user about the domain. This
is important in training new personnel and in reducing mem-
ory load for experienced users. The presentation can be direct
(tools which present the information explicitly to the user) or
indirect (e.g., during data acquisition or information retrieval
(24)). Explicit ontology can also be used to support its own
change. This is particularly useful in the office environment
where the ontology of information is often changing rapidly,
not only by extension, but also by reinterpretation. With the
support of change and the capacity for querying the ontology of
the data comes a potential for information change not cur-
rently available: the information system can itself act as a
communication system for discussing and controlling the
terms in which the domains addressed are described (25). This
is only one form of “idea generation” in which the systems
themselves support the exploration of not only ideas but the
frameworks in which those ideas are expressed.

Another dimension of difference between Al ontologies and
traditional ones (e.g., data dictionaries, relational databases)
is the sophistication of AI knowledge representation (qv) tech-
niques in representing partial, hypothetical, alternative, de-
pendent, and contingent information. This sophistication of-
fers fundamentally new capabilities in the office, where such
incomplete and complex information is the rule rather than
the exception. Al ontologies also handle heterogeneity in a way,
not found in traditional ontologies, permitting the various re-
lationships between terms in the ontology to be expressed in
detail. Such heterogeneity presents a new solution to an old
problem, that of determining, when retrieving information, the
terms in which to state that query. Retrieval by reformulation
(24) offers a mode of relationship with the information system
which contrasts sharply with existing technology: the infor-
mation system can help with the formulation of the query
itself. The user’s attitude toward this task can therefore
change radically.

Finally, a wholly new continuity to information can be
achieved through the explicit representation of the ontology of
that information when the changes in that ontology are re-
corded as well. All the information, both past and present, can
be viewed as part of a single structure and the changes in its
meaning explored. Tracking the history of information (26)
can provide a view of the office which carries with it not only
the potential for reviewing that history, but also the possibil-
ity for reasoning about it.

Understanding Organizations

The people in an office are located in a matrix of different
structures: physical, technical, intellectual, social, bureau-
cratic, organizational. When Al capabilities are coupled with
communications, the people using the systems can be supplied
with information concerning these structures.

As discussed earlier, support of office work has focussed on
a bureaucratic view which sees office work as policies, proce-
dures, forms and forms-flow (7,27,28,29). Although this lim-
ited view does not have the power to even adequately describe



the work involved in the paperwork of the office, this informa-
tion is an important driver of that work (9). Making this infor-
mation explicit within the system offers for the organization
all the advantages described above for information spaces:
learning, increased sophistication, and history.

More radically, explicit encoding of the structures compos-
ing the office matrix offers the possibility of new structures
themselves, and hence significantly altered views of the office
and office work. At the low end, the explicit encoding of the
content of a group discussion can provide new forms of interac-
tion within meetings. “Working at home” can be enhanced by
explicit encoding of project information. Distributed work
groups may not have either an “office” or a corresponding or-
ganizational structure, but rather only agreements to collabo-
rate and a sense of presence of participants maintained
through explicitly encoded group information. An even less
formal, yet still explicit, form of organization is that provided
by distribution lists and teleconferencing within electronic
mail. Coupling this with explicit encoding of the structural
matrix provides for yet other new interactions within the “of-
fice”; the organizationally constructed structure can itself be
an important driver of the interactions (21). Finally, small
organizations have a fluid structural matrix which makes
them particularly productive: there is no need to create orga-
nizational or bureaucratic entities to correspond to projects. It
may be possible to extend such fluid and complex structures to
larger organizations through explicit encoding and manipula-
tion of these organizational relationships.

So by explicitly encoding the structural matrix of an orga-
nization and by making that structure a domain for attention,
Al technology can be used proactively to create awareness of,
and changes in, the processes by which offices and organiza-
tions run.

Summary

Al technology is being used to create office systems for ad-
dressing both subject and overhead domains of office work.
This technology provides better system construction and
maintenance techniques and extended system functionality.
However, the essential core of office work is matching the
organization to its diverse and changing environment. Since
even Al systems are, as yet, not directly responsive to their
environments, all office systems must still be regarded as do-
ing the routine work for their human partners who handle
diversity and change. But, unlike traditional systems, Al sys-
tems explicitly encode information about their domains.
Therefore they can extend their limited roles to include that of
office educator, providing people in offices with new ways to
gain and manipulate the information necessary to command
their machines, their communications media, their subject do-
mains and even the organization itself.
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OPS-5

OPS-5 is a domain-independent production system. It is the
latest in a series that started with “OPS” (see C. L. Forgy and
J. McDermott, OPS, a Domain-Independent Production Sys-
tem, Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA, pp. 933-939, 1977).
The main source is the OPS-5 User’s Manual (see C. L. Forgy,
OPS-5 User’s Manual, Technical Report, CMU-CS-81-135,
Carnegie-Mellon University, Pittsburgh, PA, (July, 1981)).
The OPS-5 environment is built on top of LISP (qv) (however,
there exists one implementation in “BLISS”) and contains a
working memory and a production memory. One production
consists of a left-hand side (LHS) and a right-hand side (RHS)
that correspond approximately to the IF-part and THEN-part
of a normal programming language. The RHS of a production
is executed if its LHS matches the content of the working
memory. If several LHSs match, a conflict-resolution strategy
is used. If no LHS matches, the “program” terminates. The
VAX configuration program R1 is a commercially used prod-
uct based on OPS-4 [see J. McDermott, “R1: A rule-based con-
figurer of computer systems,” Artif. Intell. 19(1), 39—88 (Sep-
tember 1982)]. R1 has been followed up by a new version called
XCON (qv).

J. GELLER
SUNY at Buffalo

OPTICAL FLOW

When an observer moves relative to the environment, the two-
dimensional (2-D) image that is projected onto the eye under-
goes complex changes. The pattern of movement of features in
the image is referred to as the optical flow field (1). Optical
flow can be represented by a 2-D field of velocity vectors as
shown in Figure 1. In Figure 1la the optical flow is generated
by the movement of an observer relative to a stationary envi-
ronment. The “observer” is a camera mounted on an airplane
that is flying over terrain. A single snapshot from a sequence
of images is shown with reduced contrast. The black vectors
superimposed on the image represent the optical flow, or veloc-
ity field. The direction and length of these vectors indicate the
direction and speed of movement of features across the image

as the airplane flies along. Optical flow is also generated by
the motion of objects in the environment. Figure 1b shows
three views of a three-dimensional (3-D) wire-frame object
that is rotating about a central vertical axis. Figure 1c shows a
snapshot of the object at a particular moment in time, with
vectors superimposed that indicate the velocities of individual
points on the object.

The analysis of the optical flow can be divided into two
parts: The first is the measurement of optical flow from the
changing image, and the second is the use of optical flow to
recover important properties of the environment. The motion
of features in the image is not provided to the visual system
directly but must be inferred from the changing pattern of
intensity that reaches the eye. Variations in the measured
optical flow across the image (also known as motion parallax)
can then be used to recover the movement of the observer, the
3-D shape of visible surfaces, and the locations of object bound-
aries. For example, from a sequence of optical flows such as
that shown in Figure 1a, it is possible to recover the motion of
the airplane relative to the ground. The variation in speed of
movement of points on the wire-frame object of Figure 1c al-
lows the recovery of its 3-D structure from the changing 2-D
projection. Sharp changes in the optical flow field indicate the
presence of object boundaries in the scene. The measurement
and use of optical flow are discussed below.

Measurement of Optical Flow

Computational studies offer a broad range of methods for mea-
suring optical flow (for reviews, see Refs. 2—-5). Some methods
compute the instantaneous optical-flow field directly. Others
track features across the image and thus compute a correspon-
dence between features from one moment to the next. Methods
for measuring motion also differ in the stage of image process-
ing at which movement is first analyzed. For example, some
infer movement directly from changes in the image intensi-
ties, and others first filter the image, or extract features such
as edges. The range of techniques for motion measurement
(see Motion analysis) are reflected in a broad range of applica-
tion domains, from the simple tracking of objects along a con-
veyor belt in an industrial setting to the analysis of more
complex motions such as that of clouds in satellite weather
data, heart walls in X-Ray images, or cells in cell cultures. The
analysis of optical flow is also becoming essential in autono-
mous navigation (see Autonomous vehicles; Robots, mobile)
and robotic assembly (see Computer-integrated manufactur-
ing; Robotics).

The measurement of optical flow poses two fundamental
problems for computer-vision systems. First, the changing pat-
tern of image intensity provides only partial information
about the true motion of features in the image due to a prob-
lem often referred to as the aperture problem. Second, when
the general motion of objects is allowed, there does not exist a
unique optical-flow field that is consistent with the changing
image. In theory, there exist infinite possible interpretations
of the motion of features in the image. Additional constraint is
required to identify the most plausible interpretation from a
physical viewpoint.

The aperture problem is illustrated in Figure 2. Suppose
that the movement of features in the image were first detected
using operations that examine only a limited area of the im-
age. Such operations can provide only partial information
about the true motion of features in the image (2—7). In Figure
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Figure 1. (a) Optical-flow field, represented by black arrows, is super-
imposed on a natural image that was taken from an airplane flying
over terrain. (b) Three views of a wire-frame object rotating about a
central vertical axis. (¢) Projected pattern of velocities of individual
points on the object are shown superimposed on a snapshot of the
object in motion (an orthographic, or parallel projection is used).
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(5) (c)

Figure 2. (a) Operation that examines the moving edge E through
the limited aperture A can compute only the component of motion ¢ in
the direction perpendicular to the orientation of the edge. The true
motion of the edge is ambiguous. (b) A circle undergoes pure transla-
tion to the right. The arrows along the circle represent the perpendicu-
lar components of motion that can be measured directly from the
changing image. (¢) A contour C rotates, translates, and deforms to
yield the contour C’. The motion of the point p is ambiguous.

2a the extended edge E moves across the image, and its move-
ment is observed through a window defined by the circular
aperture A. Through this window, it is only possible to observe
the movement of the edge in the direction perpendicular to its
orientation. The component of motion along the orientation of
the edge is invisible through this limited aperture. Thus, it is
not possible to distinguish between motions in the directions
b, ¢, and d. This property is true of any motion detection opera-
tion that examines only a limited area of the image. As a
consequence of the aperture problem, the measurement of op-
tical flow requires two stages of analysis: The first measures
components of motion in the direction perpendicular to the
orientation of image features; the second combines these com-
ponents of motion to compute the full 2-D pattern of movement
in the image. In Figure 2b a circle undergoes pure translation
to the right. The arrows along the contour represent the per-
pendicular components of velocity that can be measured di-
rectly from the changing image. These component measure-
ments each provide some constraint on the possible motion of
the circle. Its true motion, however, can be determined only by
combining the constraints imposed by these component mea-
surements. The movement of some features such as corners or
small patches and spots can be measured unambiguously in
the changing image. Several methods for measuring motion
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rely on the tracking of such isolated features (2—4,6). In gen-
eral, however, the first measurements of movement provide
only partial information about the true movement of features
in the image and must be combined to compute the full optical-
flow field.

The measurement of movement is difficult because in the-
ory, there are infinitely many patterns of motion that are con-
sistent with a given changing image. For example, in Figure
2c, the contour C rotates, translates, and deforms to yield the
contour C’ at some later time. The true motion of the point p is
ambiguous. Additional constraint is required to identify a sin-
gle pattern of motion. Many physical assumptions could pro-
vide this additional constraint. One possibility is the assump-
tion of pure translation. That is, it is assumed that velocity is
constant over small areas of the image. This assumption has
been used both in computer-vision studies and in biological
models of motion measurement (2—6,8). Methods that assume
pure translation are useful for detecting sudden movements
and tracking objects across the visual field. These methods
have led to fast algorithms for computing a rough estimate of
the motion of objects, which is often sufficient in applications
of motion analysis. Tasks such as the recovery of 3-D structure
from motion require a more detailed measurement of relative
motion in the image. The analysis of variations in motion such
as those illustrated in Figure 2¢ requires the use of a more
general physical assumption.

Other computational studies have assumed that velocity
varies smoothly across the image (5,7). This is motivated by
the assumption that physical surfaces are generally smooth.
Variations in the structure of a surface are usually small com-
pared with the distance of the surface from the viewer. When
surfaces move, nearby points tend to move with similar veloci-
ties. There exist discontinuities in movement at object bound-
aries, but most of the image is the projection of relatively
smooth surfaces. Thus, it is assumed that image velocities
vary smoothly over most of the visual field. A unique pattern
of movement can be obtained by computing a velocity field
that is consistent with the changing image and has the least
amount of variation possible. The use of the smoothness as-
sumption allows general motion to be analyzed and can be
embodied into the optical-flow computation in a way that
guarantees a unique solution (5). The optical-flow fields shown
in Figure 1 were computed with an algorithm that uses the
smoothness assumption (5).

Use of Optical Flow

Most computational studies of the use of optical flow have
focused on the recovery of the movement of the observer and 3-
D structure and movement of surfaces on the scene (for re-
views; see Refs. 9—11). Some have also addressed the interpre-
tation of discontinuities in the optical-flow field (e.g., Ref. 12).
Theoretically, the two problems of recovering the 3-D move-
ment of the environment and observer are closely related. A
fundamental problem faced by both is that there does not exist
a unique interpretation of the 2-D image in terms of the 3-D
motion of the observer and visible surfaces. Additional con-
straint is required to obtain a unique interpretation.

With regard to the recovery of 3-D structure from motion,
computational studies have used the assumption of rigidity to
derive a unique interpretation. These studies assume that if it
is possible to interpret a changing 2-D image as the projection
of a rigid 3-D object in motion, such an interpretation should

be chosen (for reviews, see Refs. 4,9-11). When the rigidity
assumption is used in this way, the recovery of structure from
motion requires the computation of the rigid 3-D objects that
would project onto a given 2-D image. The rigidity assumption
was suggested by perceptual studies that described a tendency
for the human visual system to choose a rigid interpretation of
moving elements (13,14).

Computational studies have shown that it is possible to use
the rigidity assumption to derive a unique 3-D structure from
a changing 2-D image. Furthermore, it is possible to derive
this unique 3-D interpretation by integrating image informa-
tion only over a limited extent in space and in time. For exam-
ple, suppose that a rigid object in motion is projected onto the
image using a parallel projection such as that illustrated in
Figure 1lc. Three distinct views of four points on the moving
object are sufficient to compute a unique rigid 3-D structure
for the points (9). In general, if only two views of the moving
points are considered or fewer points are observed, there are
multiple rigid 3-D structures consistent with the changing 2-D
projection. If a perspective projection of objects onto the image
is used instead, two distinct views of seven points in motion
are usually sufficient to compute a unique 3-D structure for
the points (11). Other theoretical results address the informa-
tion that can be obtained directly from the optical-flow field
(8,9). These and other theoretical results are summarized in
Ref. 9. These results are important for two reasons. First, they
show that by using the rigidity assumption, it is possible to
recover a unique structure from motion information alone.
Second, they show that it is possible to recover this structure
by integrating image information over a small extent in space
and time. Computational studies of the recovery of structure
from motion provide algorithms for deriving the structure of
moving objects (9—11). These algorithms can also be used to
recover the motion of an observer relative to a stationary
scene.
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PAM

A goal-based story-understanding system (see Story analysis),
PAM was written in 1978 by Wilensky at Yale University (see
R. Wilensky, PAM, in R. C. Schank and C. K. Riesbeck (eds.),
Inside Computer Understanding: Five Programs Plus Minia-
tures, Lawrence Erlbaum, Hillsdale, NJ, pp. 136-179; 1981).

M. Taie
SUNY at Buffalo

PANDEMONIUM

Developed in 1959 by O. G. Selfridge, PANDEMONIUM was
one of the earliest attempts at machine learning (qv). It exem-
plified the approach to learning at the time, anthropomorphic
neural networks with partially random initial structure. Re-
search on learning has moved away from this paradigm (see
0. G. Selfridge, Pandemonium: A Paradigm of Learning, in D.
Blake and A. Uttley (eds.), Proceedings of the Symposium on
Mechanization of Thought Processes, Her Majesty’s Stationery
Office, London, 1959).

K. S. Arora
SUNY at Buffalo

PARRY

PARRY was one of the earliest attempts at belief modeling
(see Belief systems). Designed by Colby around 1971 at Stan-
ford University, PARRY simulated the conversational behav-
ior of a paranoid person. The system integrates inferences
with affects and intentions to produce behavior that has been
classified as paranoid by several psychologists who conversed
with the program (see K. Colby, Artificial Paranoia, Perga-
mon, New York, 1975).

K. S. Arora
SUNY at Buffalo

PARSING

Parsing a sentence of a natural language such as English is
the process of determining if it is syntactically well formed
(grammatical) and, if so, of finding one or more structures
(structural descriptions) that encode useful information of
some kind about it. The word is derived from the Latin pars
orationis (part of speech) and reflects a process that has been
carried out by human beings from medieval times to the
present. This activity traditionally took the form of assigning
a part of speech to every word in a given sentence, of determin-
ing the grammatical categories of words and phrases, and of
enumerating the grammatical relations between words. Its
purpose was pedagogical, to help students of a language in-
crease their mastery of it.

In modern times developments in linguistics and computer
science have led to a somewhat different set of activities being
associated with the term parsing. The availability of com-
puters was one of the factors that led to the replacement of
vague, partially specified procedures that were carried out by
humans by well-specified algorithms that were carried out by
machines. Also, the change in purpose of the activity led to a
corresponding change in the nature of the structural descrip-
tions produced. Pedagogical concerns were replaced by a re-
quirement that structural descriptions reflect the meaning(s)
of the sentences. This is of special importance in Al applica-
tions, in which the intent of input sentences must be under-
stood and acted upon in an appropriate manner.

Still another change stemmed from the use of formal sys-
tems to model aspects of natural languages. In particular,
many different types of formal, generative grammars have
been devised to specify the sentences of a language and to pair
each sentence with a corresponding set of structural descrip-
tions. The nature of these grammars, however, usually does
not provide an obvious algorithm for computing structural de-
scriptions from sentences. In this respect they are similar to
systems of logic, which implicitly specify a set of provable the-
orems but do not explicitly tell how a particular theorem is to
be proved. Just as proof procedures must be devised for sys-
tems of logic, so must parsing procedures be devised for formal
grammars of natural languages. Parsing a given sentence
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with respect to a given grammar, then, is the process of deter-
mining whether the sentence belongs to the language specified
by the grammar and, if so, finding all the structures that the
grammar pairs with the sentence.

The most common type of grammar used within computer
science to syntactically specify the sentences of a particular
programming language and to assign structure to them is the
BNF (Backus—Naur form) grammar. This is a notational vari-
ant of a class of grammars called context-free (CF) grammars,
which play a prominent role in many computational and Al
models of natural language. It is worth remarking, however,
that there is a central difference between the use of CF gram-
mars in computer science and in computational linguistics. In
the former, subclasses of CF grammars are utilized that are
both unambiguous (i.e., they assign at most one structural
description to a sentence) and parsable in time linearly propor-
tional to the length of the sentence parsed. In the latter, how-
ever, use is made of a parsing algorithm either for the general
class of (ambiguous) CF grammars or for an even more general
class of grammars, which often makes some use of CF gram-
mars. For this reason we shall treat in some detail the parsing
of CF grammars. Readers who are familiar with the BNF spec-
ification of programming languages may wish to skip the next
section, which contains introductory material on phrase-struc-
ture grammars. The subsequent sections return to the central
problem of parsing.

Phrase-Structure Grammars

The four components of a phrase-structure grammar are a set
of symbols from a terminal vocabulary Vg (terminals), another
disjoint set of symbols from a nonterminal vocabulary Vy
(nonterminals), a distinguished elements of Vy called the start
symbol, and a set of rules or productions P. By suitably replac-
ing restrictions on the allowable productions, different types of
phrase-structure grammars may be specified. The previously
mentioned CF grammar is one such type. All of its rules are of
the form A — A;A, --- A, where A belongs to Vy, and the A,
belong either to V1 or Vy. The CF right member of a produc-
tion is the empty string, and such a production is called an
erasing rule.

A derivation with respect to a CF grammar (Vy, Vr, S, P) is
a sequence of strings, the first of which is the start symbol S,
and each subsequent member (sentential form) is producible
from its predecessor by replacing one nonterminal symbol A
by a string of terminal and nonterminal symbols A;A, --- A,
where A — A A, --- A, is a production of P. Sentential forms
consisting entirely of terminal symbols can have no successors
in a derivation, and the set of all such terminal sentential
forms is said to constitute the language specified by the given
grammar (Vy, Vr, S, P).

By way of illustration, consider the CF grammar G1 = (Vy,
Vi, S, P) where Vy = (S, NP, VP, DET, N, V, PP, PREP),

Vr = (I, the, a, man, park, telescope, saw, in, with)

(Terminals such as “telescope” and nonterminals such as
PREP are to be regarded as atomic symbols), and P is the set of
productions:

S —- NP VP N — man/park/telescope
VP — V NP/VP PP DET — the/a
NP — I/NP PP/DETN V — saw

PP — PREP NP PREP — in/with

The BNF abbreviatory convention is used for writing
VP — V NP/VP PP

to indicate the two productions VP — V NP and VP — VP PP.
A sample derivation is the sequence of sentential forms:

S, NP VP,1 VP,1 VP PP, 1V NP PP, I saw NP PP,
I saw DET N PP, I saw the N PP,

I saw the man PP, I saw the man PREP NP,
I saw the man in NP, I saw the man in DET N,

I saw the man in the N, I saw the man in the park.

The final sentential form, “I saw the man in the park,” is one of
the sentences in the language generated by G1.

G1 has been made simple to aid in illustrating certain pars-
ing algorithms, but it is deficient in generating such sentences
as “a park in I saw 1.” A much more complicated set of produc-
tions is required to produce reasonable coverage of a natural
language without generating such unwanted strings of termi-
nals.

Requiring that the structural descriptions reflect meaning
makes the task of producing adequate grammars much more
difficult. The use of derivations can be extended to provide for
structural descriptions by replacing each production A —
AA;, --- A, by a corresponding production A — (,A A, - A,)
where (5 and ) are two new terminal symbols.

The result of such systematic replacement of productions P
and augmentation of Vq for G1 is another CF grammar, G2.
For every derivation of G1 there is a derivation of G2 in which
corresponding productions are invoked. The structural de-
scription of a sentence generated by G1 is the sentence gener-
ated by the corresponding derivation with respect to G2. For
the example, that derivation is

S, (sNP VP), (s(xpD) VP), ...,
(s(npD) (vp(yp(ysaw) (yp(perthe) (y\man)))

(pp(prepin) (np(perthe) (ypark)))))

This last sentential form of the derivation with respect to
G2 is the structural description of “I saw the man in the park.”
It is a labeled bracketing that is one notation for expressing
the tree structure shown in Figure 1.

This representation is easier for humans to assimilate but
takes more space, and henceforth the labeled bracketing for-
mat will be used to represent trees, further simplifying it to

(S (NP I) (VP (VP (V saw) (NP (DET the) (N man)))
(PP (PREP in) (NP (DET the) (N park)))))
Note that there is a second structural description of “I saw
the man in the park”:
(S(NP D) (VP (V saw) (NP (NP (DET the) (N man))
(PP (PREP in) (NP (DET the) (N park))))))
which groups the words in such a way that the string “the man
in the park” is a single constituent, an NP, leading naturally

to the interpretation that the man was in the park when he
was seen. The first structural description, however, does not



S
NP VP
l/ VP/\PP
\ NP PR\EP\NP
saw DET N iln DE'T\N
the mlan tr!e park
Figure 1.

group the string “the man in the park” as a single constituent.
Instead, the VP “saw the man” is a sister to the PP “in the
park,” indicating the interpretation that the location of the
seeing of the man was in the park.

Other types of phrase structures such as finite-state gram-
mars, context-sensitive grammars, and unrestricted rewriting
systems (1-3) are definable by placing suitable restrictions on
the type of productions allowed. They play a lesser role in
specifying natural languages and hence are not treated here.

A topic of some importance in parsing is that of equivalence
between two grammars. Grammars that generate the same
language are said to be weakly equivalent. The term strong
equivalence has been used to imply at least the existence of a
1:1 correspondence between the structural descriptions of two
grammars, and in some definitions of strong equivalence, the
existence of a trivial homeomorphism from the structures of
one grammar to those of another has been required. The im-
portance of equivalent grammars to parsing is that there are
several circumstances in which it is preferable not to parse a
given grammar directly but rather to construct from it an
equivalent grammar and to parse with respect to it instead. In
certain cases the structural descriptions assigned by the
equivalent grammar are just as useful as those assigned by the
given grammar. In other cases structural descriptions with
respect to the given grammar are needed, but it still may be
more efficient to obtain an equivalent grammar, parse with
respect to it, and convert the resulting structural descriptions
to those of the given grammar than to parse directly with
respect to that given grammar. There is another reason for
using equivalent grammars in parsing. Sometimes a particu-
lar parsing algorithm is only valid for grammars with produc-
tions satisfying some restrictions, and it can be shown that for
an arbitrary grammar, an equivalent grammar that satisfies
those restrictions can be constructed. Often such restrictions
are not essential for a particular parsing algorithm but greatly
simplify its exposition and hence are useful for pedagogical
purposes.

Three types of equivalent grammars for CF grammars
much used in parsing are those with no erasing rules,
Chomsky normal-form grammars, and Greibach normal-form
grammars (1,2). Using capital letters to denote nonterminals
and lowercase letters to denote terminals, Chomsky normal-
form grammars are those with rules A — BC or A — a, and
Greibach normal-form grammars are those with rules A —
aAA, --- A, where AjA; --- A, is a string of zero or more
nonterminals.

Another topic to be considered in this section relates to the
encoding of complex information in the nodes of structural
description trees and to generalizing productions so as to re-
quire that the nodes they involve have prescribed information.
This information usually takes the form of features and their
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values. Feature names are atomic entities such as ANIMATE,
NUMBER, and GENDER and feature values are sometimes
binary (+ or —), sometimes n-valued but atomic such as MAS-
CULINE, FEMININE, and NEUTER, and sometimes complex
such as a set of recursively used feature-value pairs. Often, the
use of such features can enormously simplify the complexity of
the set of productions required to specify a particular lan-
guage. Also, it can be shown that such use of features can be
made in ways that do not affect the class of languages defin-
able. Thus, for example, it is possible to extend CF grammars
with feature restrictions in such ways that the languages de-
finable are precisely those definable by ordinary CF gram-
mars. This use of features has played an important role in
restoring to favor the use of CF languages in natural-language
specification and parsing. They are discussed further in a sub-
sequent section.

The final subject to be discussed in this section involves the
equivalence between phrase-structure grammars and corre-
sponding automata. All of the types of phrase-structure gram-
mars mentioned have as counterparts corresponding types of
automata. Finite-state automata correspond to finite-state
grammars, pushdown automata correspond to CF grammars,
linear bounded automata to CS grammars, and Turing ma-
chines to unrestricted rewriting systems. By correspondence is
meant the existence of constructions from grammars to auto-
mata and vice versa that preserve the languages specified and
the structural descriptions assigned to their sentences.

There are several ways in which this correspondence can be
exploited; the one of most concern regards the use of automata
to model particular parsing algorithms and to model ways of
implementing those algorithms. The space available here al-
lows only informally describing parsing algorithms rather
than specifying them precisely by means of automata, but the
reader is directed to other sources for instances of such usage
of equivalent automata (2,4). In the next three sections, three
of the most commonly used CF parsing algorithms are exam-
ined: recursive-descent, left-corner, and chart.

Recursive-Descent Parsing

Recursive-descent parsing, sometimes just called top-to-bot-
tom CF parsing (1,3,4), systematically pieces together struc-
tural description trees from top to bottom and from left to
right. At each stage of parsing the leftmost unexpanded non-
terminal is identified, and its daughter nodes are attached
using one of the productions that rewrite that nonterminal. If
there is more than one such production, the parser tries them
all, following a separate continuation path in each case. Such a
process is called nondeterministic. Its implementation is often
achieved by using a pushdown list to store continuations that
are subsequently retrieved and followed.

Terminal symbols thus incorporated into a structural de-
scription are matched against the next symbols of the string
being parsed. Failure to match causes the continuation in
question to fail or block. A continuation also fails if there are
remaining input string symbols after the last nonterminal has
been expanded.

One successful parse path is given by:

S
(SNP VP)
(S(NPI) VP)
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(S(NPI) (VP V NP))

(S (NP D) (VP (V saw) NP))

(S (NP I) (VP (V saw) (NP NP PP)))

(S (NP I) (VP (V saw) (NP (NP DET N) PP)))

(S (NP I) (VP (V saw) (NP (NP (DET the) N) PP)))
(S(NP 1) (VP (V saw) (NP (NP (DET the) (N man)) PP)))

(S(NP D) (VP (V saw) (NP (NP (DET the) (N man))
(PP PREP NP))))

(S (NP I)(VP (V saw)(NP (NP (DET the)(N man))
(PP (PREP in) NP))))

(S (NP I) (VP (V saw) (NP (NP (DET the) (N man))
(PP (PREP in) (NP DET N)))))

(S (NP I) (VP (V saw) (NP (NP (DET the) (N man))
(PP (PREP in) (NP (DET the) N)))))

(S (NP I) (VP (V saw) (NP (NP (DET the) (N man))
(PP (PREP in) (NP (DET the) (N park)))))

Another successful parse path leads to the structural de-
scription

(S (NP I) (VP (VP (V saw) (NP (DET the) (N man)))
(PP (PREP in) (NP (DET the) (N park)))))

whose structure indicates the sequence of continuations in-
volved in producing it.

Note that whenever the production NP — NP PP is used to
expand a leftmost nonterminal, the resulting structure con-
tinues to have NP as its leftmost unexpanded nonterminal.
Hence, expansion via this rule takes place indefinitely, and it
is seen that the algorithm does not terminate. More generally,
it is observed that nontermination of the recursive descent
algorithm will occur whenever it is applied to a grammar that
admits recursive left branching, i.e., a leftmost derivation
from some nonterminal A to a string beginning with A.

There are several ways of ensuring termination of this algo-
rithm. First, the grammar to be parsed can be required to
disallow recursive left branching. This is not as serious a limi-
tation as might at first be expected because it has been shown
that there are constructions that map a given CF grammar
into an equivalent CF grammar that is not left recursive. Con-
structions to Greibach normal form can be used for this pur-
pose. One such construction is due to Rosenkrantz (5). A sec-
ond way of ensuring termination of the algorithm is applicable
to grammars that contain no erasing rules. For such gram-
mars a continuation can be blocked whenever the number of
noncerminals that remain to be expanded exceeds the number
of still unmatched terminal symbols in the input string.

An obvious improvement that can be made to recursive-
descent parsing involves the use of a left-branching reachabil-
ity matrix R with elements R(A,B) whose arguments A and B
range over the union of Vi and Vy. R(A,B) is T (true) or F
(false) depending, if B belongs to Vy, on whether it is possible
to left branch down from B to A, and, if B belongs to Vv,
depending on whether A = B. That is, R(A,B) is T if the
grammar in question has a derivation from B to a string begin-

ning with A or if A = B. Note that R depends only on a given
CF grammar, not on any particular string to be parsed with
respect to it. Thus, R can be computed once and for all for a
given grammar of interest. Warshall’s algorithm (6) for com-
puting R has been proved optimal and is therefore recom-
mended.

Use of matrix R is illustrated by the following continuation:

S
(S NP VP)
(S (NP DET N) VP)

The leftmost unexpanded nonterminal DET cannot left
branch down to the next input string terminal “I” because
R(ILDET) = F. Hence, this continuation can be blocked at this
point without having to consider further continuations that
result from expanding DET.

Left-Corner Parsing

As the name implies, left-corner parsing (called SBT parsing
in Ref. 4) builds sentence structures in a left-to-right, bottom-
to-top fashion, piecing together the left corner of a structural
description tree first. It is not the only parsing algorithm that
builds structure from bottom to top. Shift-and-reduce parsing
is one of the more commonly encountered cases in point (1,3,4).
At each step in left-corner parsing, having determined a left-
corner subtree of a structural description tree, it attempts to
extend that subtree by scanning the productions for those
whose right members begin with the root node of the left-
corner subtree. Substituting that subtree for the first constitu-"
ent of the right member of such a production gives a larger
left-corner subtree; all of the daughter nodes of its root node
except the first remain to be replaced by appropriate structure,
this being accomplished in left-to-right order, recursively us-
ing this same left-corner parsing algorithm.

Once again, this algorithm is nondeterministic. There can
be more than one production with a right member beginning
with a given constituent, leading to one type of nondeter-
minism. Another source of nondeterminism arises whenever a
subtree is successfully built up to replace a constituent other
than the first one in the right member of some production. In
addition to making the replacement, it is also necessary to
attempt to build the subtree up to a larger subtree with the
same root node.

As with recursive-descent parsing, the recursive left-
branching matrix R(A,B) can be used to curtail continuations
that must eventually fail. At each point where a left-corner
subtree has been built up, one knows the nonterminal that one
is next attempting to satisfy (i.e., to replace). If that subtree
has root A, and B is the nonterminal to be satisfied, then one
should block if R(A,B) = F without attempting further left-
corner building of this subtree.

The first few steps in one successful path for the left-corner
parsing of the sentence “I saw the man in the park” with
respect to the grammar G1 are the following: The only produc-
tion whose right member begins with the first word in the
sentence to be parsed, “I,” is NP — 1. This gives the left-corner
subtree (NP I), and one of the productions whose right member
begins with the root of this subtree is S— NP VP. Letting the
left-corner subtree satisfy the NP node of this production gives



the new (partially determined) subtree (S (NP I) VP). One
must still parse the remaining string “saw the man in the
park” up to a tree with root VP to satisfy the VP node in (S (NP
I) VP). Proceeding in the same way, the left-corner subtree (V
saw) and then the partially determined subtree (VP (V saw) NP)
are obtained. The remaining input string at this point is “the
man in the park.” An initial substring of it must be left-corner-
parsed up to a subtree with root NP. Suppressing the details of
this, it turns out to be (NP (DET the) (N man)), with “in the
park” left as the remaining portion of the input string. This
subtree is used to replace the NP node in the previous struc-
ture (VP (V saw) NP), giving the new left-corner subtree (VP
(V saw) (NP (DET the) (N man))). Next one of the productions
is chosen whose right member begins with VP, VP — VP PP,
and it is combined with the previously determined left-corner
subtree to obtain (VP (VP (V saw) (NP (DET the) (N man)))
PP). Finally, the remaining input string “in the park” is left-
corner-parsed up to a subtree with root node PP, and this
subtree is used to replace the PP in the previous structure. The
result is one of the required structural descriptions, (S (NP I)
(VP (VP (V saw) (NP (DET the) (N man))) (PP (PREP in) (NP
(DET the) (N park))))).

The Rosenkrantz equivalent grammar construction was
previously mentioned as a means of eliminating left branch-
ing. It is also of value in relating recursive-descent parsing
and left-corner parsing. Griffiths and Petrick (7) have shown
that the left-corner parsing of a given CF grammar is mim-
icked by the recursive-descent parsing of the corresponding
Rosenkrantz equivalent grammar. This has been exploited in
parsing efforts making use of the PROLOG programming lan-
guage. The productions of a CF grammar can be directly tran-
scribed into a PROLOG form that permits parsing without
programming any parsing algorithm. PROLOG itself provides
a top-down, depth-first search (qv) procedure, which has the
effect of performing recursive-descent parsing (see Recursion).
Although PROLOG does permit the easy implementation of a
CF parser, its value is limited by the limitations of recursive-
descent parsing, namely that it does not allow recursive left
branching, and it is slower than such alternatives as left-cor-
ner parsing and chart parsing for most grammars of practical
interest. To avoid both of these problems, the Rosenkrantz
equivalent grammar construction (programmed in PROLOG)
has been used to obtain a grammar that can be parsed via the
PROLOG recursive-descent procedure, thus mimicking left-
corner parsing of the original grammar.

Griffiths and Petrick also used the Rosenkrantz construc-
tion to prove that the time required for left-corner parsing is,
at worst, a constant (depending on the grammar) multiple of
the time required to parse the sentence with respect to the
same grammar by recursive descent (8).

Chart Parsing

All of the parsing algorithms described to this point have
worst-case exponential upper bounds. That is, there exist
grammars and sentences whose parsing requires a number of
steps proportional to a constant raised to the power of the
number of words in the input string of words. The reason for
this is that when two or more nondeterministic continuations
arise, each of them can lead to the identical determination of
some substructure common to them all. To avoid this, it is
possible to store information as to which subtrees have been
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found to span substrings of the input string. This information
can then be looked up to avoid computing it more than once.

There are a number of different chart-parsing algorithms.
One variant, separately discovered by Cocke, Kasami, and
Younger (9), is now usually referred to as CKY parsing. (See
Parsing, Chart). Like most of the other chart-parsing algo-
rithms, it has a worst-case upper bound proportional to the
cube of the length of the input string. Other chart-parsing
algorithms of note are due to Kay (10), Earley (11), Kaplan
(12), and Ruzzo (13). The latter is both especially simple and
efficient, having a worst-case upper bound proportional to the
cube of the input string length with an attractively small con-
stant of proportionality.

Ruzzo’s parsing algorithm makes use of a chart or matrix
whose elements t; ; (0 = i = j =< n) are determined during the
course of parsing a string of length n. Each element t; ; consists
of a set of items each of which is a production of the given
grammar with a single dot located somewhere among the con-
stituents of the right member. For example, PP — PREP DOT
NP is a typical item. The positions between the terminals of
the input string are numbered as in (0 I 1 saw 2 the 3 man 4 in
5 the 6 park 7). If element t; ; contains the item A — Aj --- A,
DOT Ajy; -+ A, this indicates that the input string between
points ¢ and j has been parsed up to a string of trees whose
roots are Ay A; -+ Ay, and if some string beginning at point j
can be parsed up to a string of trees with roots A, -+ A,,, the
concatenation of both those strings of trees can be parsed up to
the parent node A to obtain a tree with root A.

For grammar G1 the items of to are (S — DOT NP VP,
NP — DOT I, NP — DOT NP PP, NP — DOT DET N, DET —
DOT the, and DET — DOT a. They are obtained by taking
the productions that begin with a constituent A such that
R(A,S) = T, where R is the left-branching reachability matrix,
and forming items in which the dot is located in front of the
first constituent. These items indicate the initial possibilities.
Three types of actions fill in the elements of the matrix t; ;.
Elements t;; are filled in by generating items of the type we
have seen for ty, in much the same manner that has already
been illustrated. Some of the items of elements t; ; are formed
from those of t; ;_; by hopping the dot one position to the right
if the constituent hopped over is either the input string termi-
nal located between points j — 1 and j or else a nonterminal
from which there is a derivation to that input terminal. The
remaining items are filled in by considering, in the proper
sequence, pairs of items, the first of which is of the form A —
Ag---A,DOT A,,; -+ A, and the second of which is the form
A,.1— --- DOT. If such a pair comes from corresponding ele-
ments t; ; and t;, this indicates that the substring of terminals
from points i to j has been parsed up to the string A, -+ A, with
a possible continuation of A, 4, and the substring from points j
to k£ has been parsed up to A,.,, realizing that possibility.
Hence, the dot is hopped over the constituent to its right in the
first item, and the resulting item is included among the items
of t,',k .

Acceptance is indicated by the presence of an item of the
form S — --- DOT in tg,. Structural descriptions are easily
obtained by modifying the form of items described above to
indicate the tree structure of the constituents to the left of the
dot. Whenever the dot is hopped over a constituent, that con-
stituent is replaced by any structure it dominates. The neces-
sary information about this structure comes either from the
other item involved or from information supplied by the gram-
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mar about a derivation of the next terminal symbol from the
hopped-over nonterminal.

Complex Feature-Based Grammars

There are a number of types of grammars of current interest
for specifying natural languages that make some central use
of complex feature-augmented rules and structures. To vari-
ous degrees, they also incorporate other formal devices in addi-
tion to their central phrase-structure components. They share
a common requirement for matching, in a certain way, rules
containing complex features with structural description trees
or tree fragments containing complex features, and hence they
are sometimes referred to as unification-based grammars. Ex-
amples of such grammars are generalized phrase-structure
grammars (see Grammar, generalized-phrase-structure) (14),
definite clause grammars (see Grammar, definite-clause) (15),
functional unification grammars (16), head grammars and
head-driven grammars (17), lexical functional grammars (18),
and PATR-II-type grammars (19).

It is beyond the scope of this entry to describe these formal-
isms sufficiently to describe their parsers. Note that they all
incorporate the use of a suitably-modified phrase-structure
grammar parser (see Grammar, phrase-structure), usually one
of the more common types of parsers. See the sources cited for
detailed information about these grammars and their parsers.

Two other types of grammars might also be included among
those of this section because their rules and structures also
make essential use of complex features. These two, transfor-
mational grammars and augmented transition network gram-
mars, however, are treated separately in the subsequent sec-
tions.

Transformational Grammar Parsing

It should first be noted that there is no single theory that is
agreed upon by all who use the term transformational gram-
mar (TG) to label the syntactic theory they advocate (see
Grammar, transformational). This is so because TG has
evolved, splitting on occasion into distinct formal models of
language with significant differences in the type of rules that
are allowed, on the constraints imposed on rule application,
and on the type of structural descriptions and intermediate
structures that are advocated.

It is beyond the scope of this entry to discuss these diverse
types of grammars and their parsers. Some of them are dis-
cussed in Transformational grammar. A few general remarks
are given below.

TG makes central use of a base phrase-structure-grammar
component (usually a CFG) to specify a set of base trees (deep
structures) and a transformational component to map those
trees into a set of surface-structure trees. A simple operation
(usually just extracting the terminals) on a surface-structure
tree yields one of the sentences in the language thus specified.
The meaning of a sentence is encoded in either the base struc-
tures, the surface structures, or some combination of both,
depending on the type of TG in question.

The transformational component consists of a set of one or
more transformations, usually ordered in their application in
a rather complex way. A transformation maps each of a class
of trees that satisfies certain conditions into a corresponding
tree.

Note that the normal direction in which transformations
are formulated to operate is from deep structure to surface
structure. In transformational parsing, however, one is re-
quired to find the corresponding deep and surface structures in
a sentence. For some applications and some variants.of TG it is
sufficient to find only the surface structure or only the deep
structure, but it is in general only possible to know one of
them has been correctly determined if the other has also been
determined and the transformational mapping between them
has been verified.

One way to determine the deep and surface structures as-
signed by some TG to a given sentence is to limit the possible
phrase-structure and transformational rules that might be ap-
plicable to the derivation of that sentence and then to try all
combinations of these rules in the forward direction to see
which paths terminate with the given sentence. This is called
analysis by synthesis. It was suggested by Matthews (20) but
was never implemented. It appears to be prohibitively ineffi-
cient.

Another way to determine deep and surface structure is to
reverse the forward generative procedure, going from a sen-
tence to its surface structures. Unfortunately, the machinery
for forward generation is not directly convertible to a corre-
sponding system for going in the other direction. The first step,
determination of the surface structure corresponding to a
given sentence, is complicated by the fact that it includes
structure reflecting base phrase-structure productions as well
as other structure of transformational origin. Petrick (21) has
shown that it is possible to compute from a given TG meeting
certain requirements a new CF grammar whose productions
are a superset of the TG’s base component productions and
that generates a set of structural description trees that include
all of those surface structures assigned to sentences of length
not exceeding n by the TG. This augmented base-component
CF grammar can be used to determine all of the surface struc-
tures a TG assigns to any sentence of length n or less, together
with some possible spurious ones (given a particular sentence
of some length, the augmented CF grammar valid for sen-
tences up to that length can be found if one has not already
been determined).

Petrick also presents several ways of inverting the effect of
transformations. True inverse transformations are, in general,
not computable, but pseudoinverse transforms can be mechan-
ically computed from a given set of forward transforms, and
they can be applied, together with some additional CF parsing,
to obtain a set of structures that includes all of the deep struc-
tures assigned by the TG. These must be checked to ensure
that they contain only base-component phrase structure and
to ensure that they may be mapped into the previously deter-
mined surface structure using the transformational compo-
nent of the TG in question.

This parsing algorithm is dependent on certain restrictions
being placed on the class of TGs to which it is applied. Without
such restrictions, classes of grammars such as those of
Chomsky’s aspects model have been proved to be equivalent to
Turing machines (qv) (22), and hence it is known that no
parser valid for the entire class is possible.

A final point to note with respect to transformational pars-
ing is that most parsers labeled transformational are not con-
structed from a given TG in such a way as to guarantee their
correctness. Neither are they usually constructed by hand and
then proved to be valid parsers of normally formulated TGs.



