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Preface

The texts of this book grew from an ISFMA (Sino-French Institute of
Applied Mathematics) symposium on “Wavelet Methods in Mathemat-
ical Analysis and Engineering” that took place in August 2007 on the
Zhuhai campus of Sun Yat-Sen University. This symposium was com-
posed of a one week summer school mainly directed towards Chinese
PhD students and postdocs, followed by a one week conference attended
by researchers from all over the world. This event was co-organized
by Sun Yat-Sen University in Guangzhou and the ISFMA in Shangai.
The purpose of the courses was to give the students the required level
in wavelet analysis and in the main applications that would be treated
during the conference, so that they would be able to follow it with profit.
The courses were given by Albert Cohen, Daoging Dai, Stéphane Jaffard,
Lixin Shen, Zuowei Shen and Lihua Yang; they covered basic materials
concerning construction of properties of wavelet bases, and alternative
decomposition methods; they gave an overview of the main applications
in the numerical analysis of PDEs, and signal and image processing.
The workshop exposed new techniques such as Empirical Mode Decom-
position (EMD) and new trends in the recovery of missing data, such
as compressed sensing, and a sample of a few recent key applications of
wavelets in several scientific areas. This event was part of a long term
collaboration between Chinese, Singaporean and French mathematicians
in the area of wavelet analysis, and a second event took place one year
later, with the “Chinese-French-Singaporean Joint Workshop on Wavelet
Theory and Applications” in Singapore (June 2008).

These texts essentially correspond to the courses that were given
during the summer school. Put together, they give a comprehensive
overview of both the fundamentals of wavelet analysis and related tools,
and of the most active directions of applications that developed recently.
They offer a state of the art in several active areas of research where
wavelet ideas, or more generally multiresolution ideas have proved par-
ticularly effective.

‘The paper by Jianfeng Cai, Raymond Chan, Lixin Shen and Zuowei
Shen deals with the practical problems of high resolution reconstruction
of noisy and blurred images, and the super-resolution challenge, which
consists in using a priori information on the structure of the image in
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order to reconstruct it at a higher resolution than is available; this ill-
posed problem is tackled using multiresolution ideas, which were at the
very origin of wavelet techniques, in the 1980s. The resolution of these
questions is obtained through the use of tight-framelets; the paper first
gives a tutorial on frames and tight frames, which are now an important
tool in signal and image processing, and then focuses on tight-framelets,
a tool which is exposed in details, and whose efficiency is demonstrated
in this context.

The paper by Albert Cohen addresses a fundamental problem in ap-
proximation theory: how to approximate a piecewise smooth function,
in a numerically efficient way by few simple “building blocks”. One key
idea developed in the paper is that one should use nonlinear approxi-
mation techniques: one picks the approximation from a set of functions
depending on N parameters (but which does not form a vector space),
and the paper starts by a tutorial on N-term approximation. For the
specific image processing problem which is proposed, the author devel-
oped a particularly effective method where the building blocks are piece-
wise polynomial functions on triangles on which no shape restriction is
imposed. This extra flexibility has the advantage of offering efficient
reconstruction algorithms for functions with edges along smooth lines.
The algorithms used develop refinements techniques based on multires-
olution ideas. The paper demonstrates the accuracy and the numerical
simplicity of the method.

The paper by Stéphane Jaffard, Patrice Abry, Stéphane G. Roux,
Béatrice Vedel and Herwig Wendt gives a brief tutorial on constructions
of wavelet bases, and the characterization of function spaces in terms
of wavelet coeflicients. It shows the relevance of these techniques in a
problem posed by the seminal papers of Kolmogorov in turbulence in
the 1940s, where he advocated the study of some quantities which were
expected to be scaling invariant, and fundamental for the comprehen-
sion of small scale turbulence. The study of these quantities rewritten
through a wavelet expansion yields unexpected new tools for signal and
image classification and for the selection of turbulence models. Appli-
cations to multifractal analysis are given, i.e. for the estimation on the
size of the sets of points where a function has a given pointwise Holder
regularity.

The paper by Chaochun Liu and Daoqging Dai addresses the question
of face recognition. The difficulty of the problem arises form the fact
that a face can change widely due to variations in pose, expression and
illumination. The challenge is to find attributes that remain stable under
such variations. This is precisely supplied by wavelet techniques, which
yield an efficient tool for feature extraction; this property is in agreement
with the important discovery that the human visual system indeed uses
a kind of wavelet decomposition (Gabor wavelets that are based on a
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space-frequency decomposition) as a preprocessing tool, in particular
for recognition. Furthermore, wavelets are simultaneously useful in this
context for denoising. The paper first proposes a tutorial on the problem
of face recognition, and then focuses on wavelet-based algorithms.

The paper by Lihua Yang gives an introduction to the Hilbert-Huang
transform. It supplies its theoretical mathematical background and
shows recent applications to pattern recognition. A key (but ill-posed)
problem in signal processing is to define the instantaneous frequency
of a signal. A classical way to define this notion is to use the Hilbert
transform and the associated analytic signal; however, if applied directly
to a complex signal, this method can lead to severe instabilities and
ill-functionings. A fundamental advance was obtained with the intro-
duction the Empirical Mode Decomposition, which splits the signal into
simpler basic components: the Intrinsic Mode Functions; it can be effi-
ciently used as a preprocessing, since the instantaneous frequency of each
simple component can then be determined in a numerically meaningful
and stable way. This paper shows recent applications of the Hilbert-
Huang transform e.g. to a tsunami wave, and to pattern recognition.

Alain Damlamian, Stéphane Jaffard
Editors
May 2010
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Abstract

We give a comprehensive discussion on high-resolution image
reconstruction based on a tight frame. We first present the tight
frame filters arising from the problem of high-resolution image
reconstruction and the associated matrix representation of the
filters for various boundary extensions. We then propose three
algorithms for high-resolution image reconstruction using the de-~
signed tight frame filters and show analytically the properties of
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these algorithms. Finally, we numerically illustrate the efficiency
of the proposed algorithms for natural images.

1 High-resolution image reconstruction
model

The problem of high-resolution image reconstruction is to reconstruct a
high-resolution (HR) image from multiple, under-sampled, shifted, de-
graded and noisy frames where each frame differs from the others by some
sub-pixel shifts. The problem arises in a variety of scientific, medical,
and engineering applications. The problem of HR image reconstruction
is a hot field. In the past few years, two special issues on the topic was
published: IEEE Signal Processing Magazine (Volume 20, Issue 3, May
2003) and International Journal of Imaging Systems and Technology
(Volume 14, No. 2, 2004).

The earliest study of HR image reconstruction was motivated by the
need to improve the resolution of images from Landsat image data. In
[28], Huang and Tsay used the frequency domain approach to demon-
strate the improved reconstruction image from several down-sampled
noise-free images. Later on, Kim et al. [30] generalized this idea to
noisy and blurred images. Both methods in [28, 30] are computational
efficiency, but they are prone to model errors, and that limits their use
[1]. Statistical methods have appeared recently for super-resolution im-
age reconstruction problems. In this direction, tools such as a maximum
a posteriori (MAP) estimator with the Huber-Markov random field prior
and a Gibbs image prior are proposed in |25, 43]. In particular, the task
of simultaneous image registration and super-resolution image recon-
struction are studied in [25, 45]. Iterative spatial domain methods are
one popular class of methods for solving the problems of resolution en-
hancement (3, 21, 22, 23, 27, 31, 32, 36, 38, 39, 41]. The problems are
formulated as Tikhonov regularization. A great deal of work has been
devoted to the efficient calculation of the reconstruction and the esti-
mation of the associated hyperparameters by taking advantage of the
inherent structures in the HR system matrix. Bose and Boo [3] used
a block semi-circulant matrix decomposition in order to calculate the
MAP reconstruction. Ng et al. [36] and Ng and Yip [37] proposed a
fast discrete cosine transform based approach for HR image reconstruc-
tion with Neumann boundary condition. Nguyen et al. [40, 41} also
addressed the problem of efficient calculation. The proper choice of the
regularization tuning parameter is crucial to achieving robustness in the
presence of noise and avoiding trial-and-error in the selection of an op-
timal tuning parameter. To this end, Bose et al. [4] used an L-curve
based approach. Nguyen et al. [41] used a generalized cross-validation
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method. Molina et al. [33] used an expectation-maximization algorithm.
Lu et al. [32] proposed multiparameter regularization methods which in-
troduce different regularization parameters for different frequency bands
of the regularization operator.

Low-resclution images can be viewed as outputs of the original high-
resolution image passing through a low-pass filter followed by a dec-
imation process. This viewpoint suggests that a framework of mul-
tiresolution analysis can be naturally adopted to produce an HR image
from a set of low-resolution images of the same scene with sub-pixel
shifts. In this fashion, a series of work has been done recently, see, e.g.,
[9, 10, 11, 12, 13]. Extension of these work will be discussed in the paper.

Here we present a mathematical model proposed by Bose and Boo
in [3] for high-resolution image reconstruction. Consider K x K sub-
window-shifted low-resolution images in which each image has N; x N
interrogation windows and the size of each interrogation window is 77 x
T,. Here, K x K denotes K shifts in both the vertical and horizontal
directions. The goal is to reconstruct a much higher resolution image
with My x My sub-windows, where M; = K x Ny and My = K x Ns.

In order to have enough information to resolve the high-resolution
image, it is assumed that there are sub-window shifts between the low-
resolution images. For a low-resolution image denoted by (k1, k2), where
0 < k1,kz < K with (k1,k2) # (0,0), its vertical and horizontal shifts
df, x, and di . with respect to the (0, 0)th reference low-resolution im-

: x — T ey Y — Y I
age are given by di, .. = (k1 + ekhkz) 7 andd; , = (k2 + ekl,kz) 7.
Here €f, , and €} , are the vertical and horizontal shift errors respec-

tively. We assume that |¢f, , | < § and |} , | < 1. Figure 1.1 shows
the example of 2 x 2 shifted low-resolution images.

. . . - T
T High-resolution sub-window (solid lines) ¥ -3
' (s N i
N
V4 2 14, 1 ,
: 5 5
Bl ois| v oy T | |
' ! '
V1 1 1 H H
s 2 4 1 ;
O R A S N N R SR SRS N
‘ : AU DN DU PO P
' Lk

Ideal low-resolution window (dashed lines)
Low-resolution window with shift error (dotted lines)

Figure 1.1 Windows without and with shift error when K = 2 (left and right
respectively).
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For a low-resolution image (k, k), the average quantity at its (ni,
ng)th interrogation window is modelled by:

1
Gk k2 [nh n2] = m f(xv y) dz dy + Nk k2 [nlan2]a (1'1)

Aky,kziny,nz

where the interrogation window in the low-resolution image is

1 1
Aky kaingng = [Tl (nl - 5) +di;, ko T1 (nl + 5) +d:1,k,]

1 1
X [Tg (nz — -2-) + dzl,kz’T2 (n2 + 5) + dzhkz] .

Here (n1,n2) indicates an interrogation window in the low-resolution
image (k;,k2) (where 0 < n; < N and 0 < ny < Np) and 1, k, [11, n2]
is the noise (refer to [3]). We interlace all the sub-window-shifted low-
resolution images gx, k, to form an M; x M, image g by assigning

g[Kny + k1, Kng + k2] = gk, k. [11, 2]

The pseudo high-resolution image g is called the observed high-resolution
image.

The integral values on the sub-window of the high-resolution image
is approximated by

K2
lTZA f(xvy) dz dy7 037’<M170_<_.7<M2’ (12)

flivi) = 7

which is the average quantity inside the (i,j)th high-resolution sub-
window:

T T T: T
auy= i G4 | x 12,6+ 0E]. 0si<mn0<i<M
(1.3)
To obtain the true high-resolution image f from the observed high-

resolution image g, one will have to solve (1.1) for f. By discretizing
(1.1) and (1.2) using the rectangular quadrature rule, we have

K

Gkrkaln1,m2] = > Wip,qlf[Kny+ki+p, Kna+kz+q|+1k, &, [01,72],
p,q=0

(1.4)

where the weighting matrix W for discretizing the integral equation (1.1)
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in the case without shift error is

11 L1

4 2 4

1 1

7 1 13

1 . . . . .
Wzﬁ o - P (1.5)

1 1

7 1 13

11 11

4 2 2 44

which is assigned for associated sub-windows of the high-resolution im-
age. Equation (1.4) is a system of linear equations relating the unknown
values f[¢, j] to the given observed high-resolution image values g[z, j].
For simplifying the exposition, f and g will be considered as the
column vectors formed by f[¢,j] and g[¢,j]. This linear system corre-
sponding to (1.4) for high-resolution image reconstruction is reduced to

Hf+n=g, (1.6)

where the blurring matrix H, which is formulated from (1.4), varies
under different boundary conditions and 7 is the noise vector. For the
case without shift error, the blurring matrix H is given by

- - - -

N =

=

L3
DN =
ol

where the Kronecker operator ® is defined by A ® B = [a;; B] with
A = [a;;]. The key problem is to recover the true high-resolution image
f from the observed high-resolution image g by solving (1.6).

If the low-resolution images are shifted by exactly half of the window,
then the problem reduces to solving a spatially invariant linear systemn.
Depending on the boundary conditions we impose on the images, the
coefficient matrix H is either Topelitz or Toeplitz-like. The model was
then solved in [3, 36] using preconditioned conjugate gradient method.

We next discuss in details several approaches that will use the tight
frame for solving the system (1.4) or (1.6). The performance of these
methods will be examined in numerical simulations. In the next section,
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we will give a brief review on the frame theory. In particular, we will
present the tight frame system with (1.5) as its low-pass filter.

The outline of this paper is as follows. In Section 2, we give a brief
review on tight frames with an emphasis on the unitary extension prin-
ciple. Section 3 contains four main parts. The first part presents the
tight frames arising from the problem of HR image reconstruction. The
matrix representations of the tight frame filters associated with the HR
image reconstruction are given, by imposing the periodic and symmet-
ric boundary conditions, in the second and third parts, respectively. It
follows by showing the multi-level framelet decomposition and recon-
struction in the last part. We propose three framelet-based algorithms
to tackle the problem of HR image reconstruction in Section 4. In partic-
ular, we give a complete analysis for Algorithm I in Section 5. Numerical
experiments for all three algorithms are presented in Section 6.

2 Preliminaries on tight framelets

The notion of frame was first introduced by Duffin and Schaeffer [20] in
1952. A countable system X C L?(R) is called a frame of L2(R) if

allfiif < Y K2 < BIFIZ (2.1)

heX

where the constants oo and 3, 0 < o < 8 < oo, are lower and upper
bounds of the frame system X. The notation (-,-) and | - ||z = {-,-)*/2
are the inner product and norm of L2(R). When a = B(= 1), the frame
system X is called a tight frame. In what follows, our discussion is
concentrated on the tight frame.

Two operators, namely analysis operator and synthesis operator, are
associated with the tight frame. The analysis operator of the frame is
defined as

F:L*R) — £2
with
F(f) = {{f, R) }nex-

Its adjoint operator F*, called the synthesis operator, is defined as

F*:£2 — L*(R)

with
F*(c) = Z crh, c={cn}nex-
heX
Hence, X is a tight frame if and only if 7*F = Z. This is true if
F =Y _(f,ph, VfeL*R), (2.2)

heX



Tight Frame Based Method 7

which is equivalent to

113 =D A RIZ, VS e LAR). (2.3)

heX

Equation (2.2) is the perfect reconstruction formula of the tight frame.
Identities (2.2) and (2.3) hold for an arbitrary orthonormal basis of
L?(R). In this sense, an orthonormal basis is a tight frame, and a tight
frame is a generalization of orthonormal basis. But tight frames sacrifice
the orthonormality and the linear independence of the system in order
to get more flexibility. Therefore tight frames can be redundant.

For a tight frame system X, we have

D UARE S fenl

heX heX

for all possible representation of f = ), x crh, {cn} € £2. In other
words, the sequence JF(f) obtained by the analysis operator F has
the smallest 2 norm among all sequences {c;} € £2 satisfying f =
> hex Chh.

If X(T) is the collection of the dilations and the shifts of a finite set
¥ C L*(R), i.e.,

X(¥) = {K*p(K'z~j) 19 € T4, j € Z},

then X(¥) is called a wavelet (or affine) system of dilation K. In this
case the elements in ¥ are called the generators. When X (V) is a tight
frame for L2(R), then ¢ € ¥ are called (tight) framelets.

A normal framelet construction starts with a refinable function. A
compactly supported function ¢ € L%(R) is refinable (a scaling function)
with a refinement mask 7y if it satisfies

(K = T40.

Here 5 is the Fourier transform of ¢, and 7, is a trigonometric polynomial
with 74(0) = 1, i.e., a refinement mask of a refinable function must be
a lowpass filter. One can define a multiresolution analysis from a given
refinable function, details about that is omitted here, but can be found,
for instance, in [19, 29].

For a given compactly supported refinable function, the construction
of tight framelet systems is to find a finite set ¥ that can be represented
in the Fourier domain as

P(E) = Tpd
for some 27-periodic 7. The unitary extension principle (UEP) of [42]
says that the wavelet system X (¥) generated by a finite set ¥ forms a
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tight frame in L?(R) provided that the masks 7, and {7y }ycv satisfy:

To(w)7s (w+2%)+¢§pm( w)Ty (w+2"’7”)= 7.0,
v=0,1,---,K—1 (2.4)

for almost all w in R. Practically, we require all masks to be trigono-
metric polynomials. Thus, (2.4) together with the fact that 745(0) = 1
imply that 7,(0) = 0 for all ¢y € . Hence, {7y }yecv must correspond
to high-pass filters. The sequences of Fourier coeflicients of 7, as well
as Ty itself, are called framelet masks. The construction of framelets ¥
essentially is to design, for a given refinement mask 74, framelet masks
{7y }wew such that (2.4) holds. A more general principle of construction
tight framelets, the oblique extension principle, was developed recently
in [14, 17].

In the next section, we will use the EUP to construct a framelet
system arising from the problem of HR image reconstruction.

3 Tight frame system arising from high-
resolution image reconstruction

3.1 Filter design

The low-pass filter (1.5) for high-resolution image reconstruction is sep-
arable and can be written as follows

W = hlho,
where
1]1 1
hg=—=1=,1,---,1,=1.
(4] K|:2,, ) 72]

Hence, to design a tight frame system with W as its low-pass filter, we
just need to construct a tight frame system with hg as its low-pass filter.
By virtue of the Fourier series of hg, define

o) = ] ho(K w), (3.1)

Jj=1

where

ho(w) = == + —= (Z exp(—ikw ) exp( iKw).
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It was shown in [44] that ¢ is in L2(R) and Hélder continuous with
Holder exponent In2/In K.
For any integer L > 2, define

mrp = \éi [COS (Z) cos (%I%) ,7°° ,CO8 ((—ZLT_LI)E)] )

and their Fourier series
~ (2¢ — 1)p1r .
g p(w) = 2 Z s (25225 ) expl-ita),

forp=1,---,L —1. We further define, for any integer K > 2,
hapg(w) 1= i g(w)fiire,p (@), (3-2)

wherep=1,--- ,K — 1, q € {0,1}. We can easily check that

1 K-1

2né
Z Z h2P+‘I(w)h2P+q( ) 615701 £=0,1,---,K-1 (33)
g=0 p=0

The EUP of [42] yields that the functions

‘I’={¢2p+q:0SpSK_1a q=0a17 (p,Q)%(O,O)}
defined by g 3
Yap+q(w) = hopiq (E) ¢ (‘k‘)

are tight framelets. Furthermore,

X(¥) = {Kk/2¢2p+q(Kk -—j):0<p< K -1,

¢=0,1,(p,q) # (070)1 k,je Z}

is a tight frame system of L2(R).

In the following discussion, we always assume that the indexes of all
filters hg, run from —K/2 to K/2 for even number K and —(K + 1)/2
to (K —1)/2 for odd number.

We are interested in the matrix representation of the identity

1 K-1

YD haprg@)* =0 (3.4)

q=0 p=0

for filters given by (3.2). In image processing, periodic and symmetric
boundary conditions are usually imposed to give matrix representation
of (3.4). In the following subsections, we will give the corresponding
representations for both boundary conditions.
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3.2 Matrix representation of filters with periodic
boundary conditions

For simplicity, we are not going to write the matrix forms of the filters
given by (3.2) for a general integer K. Instead, we give these matrices
for the filters with K = 2 and K = 3 only. From there, one can easily
give the matrix representation for filters associated with any integer K.
Example 1. For K = 2, we have, from (3.2), the low-pass filter hy =
%[1, 2,1] and three high-pass filters hy = %[1,0, —1], hy = %[1,0, —1], and
hs = %[1, —2,1], respectively. The corresponding matriz representation
under the periodic boundary condition for filters hg, hi, ha, and hs are

circulant matrices Hy, Hy, Hy, and H3, respectively, with their first rows
being the following

11 1 1 1
[E’Z,O’-“,O,Z]’ [0,_2’07"'7072]a

1 1 11 1
[Ov_Zaoa"'yan]a [__2-’1,0’.”,0,2].

We can check that
HIHy+ HTH, + HTHo + HT H3 = I.

We remark that hy = hy in above tight frame filters. We can merge h,y
and hy together and deduce a new tight frame system with the low-pass
filter %[1,2, 1] and two high-pass filters 3?[1,0,—1] and $[1,-2,1]. A
similar situation happens in the next example.

Example 2. For K = 3, we have the low-pass filter hg = %[1,2,2, 1]
and five high-pass filters hy = £[1,0,0,—1], he = 3@[1, 1,-1,-1], hg =
¥8[1,-1,-1,1], hs = ¥2[1,-1,-1,1], and hs = ¥Z[1,-3,3,-1]. The
corresponding matriz representation under the periodic boundary con-

dition for filters hg,hi,--- , hs are circulant matrices Ho, H1,--- , Hs,
respectively, with their first rows being the following

1 1
6[2,1)0)""07172]v E[O)_]"O’”.?O’l?O]’

V6 V6
ﬁ[_la_l’oa"' ,0,1,1],6[—1,1,0,"' 70a1a—1]7
V2 V2

[_1:1101"'7071)_1]’ [3a_1)07"'70a1$_3]'

12 12

Again, it can be easily checked that
HIHo+ HTH, + HIHy + Hf Hs + H{ Hy + HT Hs = I.



