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Preface

This is an attempt to write a book that differs as much as possible from the existing?
books in this area. Although the main protagonists of the story, Hardy, Bergman, Besov,
Lipschitz, Bloch, Hardy-Sobolev, BMO, etc., are well known through many books, some
new properties of them have been described, whereas verifications of known proper-
ties are in many cases new. The reader is assumed to be well acquainted with complex
analysis and the theory of Lebesgue integration, which includes the fundamental facts
of the harmonic functions theory — Fatou’s theorem on radial limits of the Poisson in-
tegral of a complex Borel measure, along with the canonical isometry between the
harmonic Hardy space h” and the Lebesgue space L? (p > 1). The knowledge of a min-
imum of the theory of Fourier series and Banach space techniques is also desirable.
All this, and much more, can be found in Rudin’s Real and complex analysis.

Some deep facts on Lebesgue spaces and maximal functions stated without proofs
in Appendix B, e.g. the Fefferman—Stein vector maximal theorem and a theorem of Nik-
ishin, only should be understood and taken as granted. One more fact of such deep-
ness is used in Chapter 5, and concerns the real interpolation between Hardy spaces,
but it arises because of the author’s ineffectiveness to find a simple proof, which cer-
tainly exists, of a theorem on radial limits of “Hardy-Bloch” functions. The author
hopes that applications of these theorems in this text shows their strength and that
this can motivate the reader to learn the corresponding theories.

The exposition is not linear but the reader can be sure that there are no circular
arguments in the text.

Approximately 30 percent of the text already appeared in the author’s booklet In-
troduction to Function Spaces on the Disk [374],but “Classes” cannot be treated as an
expanded version of “Spaces” because the latter is not a subset of the former, and the
organization of text is significantly different.
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1 The Poisson integral and Hardy spaces

This chapter contains the basic properties of the Poisson integral of an L'-function
and, more generally, of a complex measure on the circle T. Fatou’s theorem on ra-
dial limits, the Privalov-Plessner on the radial limits of the conjugate function, the
Fefferman—Stein theorem on subharmonic behavior of | f|?, and the Riesz projection
theorem are some of the most important results of the chapter. Also, the well-known
connection between the harmonic Hardy space h” (1< p < co) and the Lebesgue space
LP(T) is presented without proof. A brief discussion of h? for p < 1 is in Section 1.3. In
the last section we present a quick introduction to basic properties of (analytic) Hardy
spaces. Our approach differs from that in other texts [129, 159, 273, 425, 430, 525] in
which we first prove the Hardy-Littlewood decomposition lemma, and then deduce
the radial limits theorem, and some other fundamental results due to F. and M. Riesz,
Smirnov, Szegd, Kolmogorov et al., without using Blaschke products. At one place we
use the Hardy-Littlewood complex maximal theorem although we consider the max-
imal functions in Appendix B, Section B.3. However, the reader can treat Section B.3
as a part of this chapter inserted before considering Hardy spaces.

Preliminaries

Some notation

We denote by R, C, Z, and N the real line, the complex plane, the set of all integers,
and the set of nonnegative integers, respectively. By R, and IN, we denote the set of
positive real numbers and the set of positive integers. If dy is a finite positive measure
on a sigma-algebra of subsets of a set S, we write

1
frau= g | e
N S
and in particular
2n ] 2n 1
i0 _ L i0 S
g[f(e )d6 = — Jf(e ) o, l])[fdA— nlfdA»

where dA is the Lebesgue measure on Cand D = {z € C: |z| < 1}. Similarly

][ F@ 1l = - Jf(() \dzl, where T = D.
T

T

The arc-length measure on T will be denoted by dl and so

[ro =] ra

T
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The two-dimensional measure of a measurable set G ¢ C will be denoted by |G|.
Similarly, |S| denotes the arc-length measure of § c T.

When dealing with spaces of analytic or harmonic functions it is convenient to
use a new symbol, “¢”, that has the following properties:

é=0 and x < 0 <oo forallx € R.

Let f € LP(T),0 < p < o0, and

1/p
nﬂm@fwﬂu=<}umvma> .

&
We write L°(T) = C(T), and interpret the integral as in the case p=00:|flle =1flle =
I fll o (x)- SO we have LP(T) 2 L(T) for 0 < p < g < co.

Maébius transformations of the unit disk
Every biholomorphic mapping (M6bius transformation) ¢ from ID onto D can be rep-
resented as ¢(z) = bo,(z), where |b| = 1 and

a—=z

o,(z) = " lal <1, |z] < 1.

These transformations form a group, called the Mébius group and denoted by Méb(DD),
with respect to composition of mappings.
The functions o, have important properties:

=] =] . .
- o, =0, whereo, denotes the inverse mapping.

- 0@ =(0,)(2) = -1, jal<1, |2l < L.

|1-az|*”
—  We have

_ 2 _ 2
-l = 22D ooy - e

and, more generally,

(1-1al»)(1 - zw)

1-0,(2)0,(Ww) = (1-za)(1 - aw)

— The functional d(a, z) = |0,(2)| (a,z € D) is a metric on D, and is called the pseu-
dohyperbolic metric. It is Mobius invariant in sense that d(o(w), o(z)) = ?(w, z) for
all 0 € Mob(ID) and z, w € D.
~  The measure dr(z) = (1 - |z|*) "2 dA(z) is Mobius invariant, which means in par-
ticular that
Ihoaadrz jhdr,
D D
where h > 0 is a measurable function on ID.



