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Probability: The Classical Limit Theorems

The theory of probability has been extraordinarily successful at describing a variety of
natural phenomena, from the behavior of gases to the transmission of information, and
is a powerful tool with applications throughout mathematics. At its heart are a number
of concepts familiar in one guise or another to many: Gauss’ bell-shaped curve, the
law of averages, and so on, concepts that crop up in so many settings that they are, in
some sense, universal. This universality is predicted by probability theory to a
remarkable degree. It is the aim of the book to explain the theory, prove classical limit
theorems, and investigate their ramifications.

The author assumes a good working knowledge of basic analysis, real and complex.
From this, he maps out a route from basic probability, via random walks, Brownian
motion, the law of large numbers and the central limit theorem, to aspects of ergodic
theorems, equilibrium and nonequilibrium statistical mechanics, communication over
a noisy channel, and random matrices. Numerous examples and exercises enrich the
text.

HENRY MCKEAN is a professor in the Courant Institute of Mathematical Sciences at
New York University. He is a fellow of the American Mathematical Society and in
2007 he received the Leroy P. Steele Prize for his life’s work.
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Il y a des faussetés déguisées qui représentent si bien la verité, que ce serait
mal juger de ne s’y laisser pas tromper.
La Rochefoucauld, Maximes no. 282
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Preface

The goal of this book is to present the elementary facts of classical
probability, namely the law of large numbers (LLN) and the central
limit theorem (CLT), first in the simplest setting (Bernoulli trials), then
in more generality, and finally in some of their ramifications in, e.g.
arithmetic, geometry, information and coding, and classical mechanics.

Let’s talk about coin-tossing to illustrate the principal themes in the
simplest way.

Let the coin be honest so that the probability of heads or tails is the
same (= 1/2). After a large number (n) of independent trials, you have
# = e + -+ + e, successes, meaning heads, let’s say e = 1 for heads,
e = 0 for tails. The law of large numbers states that #/n tends to 1/2
as n T oo with probability 1 - P| 7111T1C1>1o # = 1] =1 as it is written. That’s

only common sense if you like. The central limit theorem is deeper. It
says that if you center and scale # as in (# — n/2) over /n/2, then for
large n you will see the celebrated bell-shaped curve of Gauss:

. #—n/2 b g—o"/2
llglop[aSW<b:| = | ﬁdl‘ for any a < b.

I say it lies deeper, but it is only the proof that it is so. The phe-
nomenon itself is easily illustrated in Nature. To do this, it is best to
make a little change, making new es from the old by the rule e —
2(e—%) = *+1. Then x(n) = e;+- - -+e, is the standard random walk, so-
called, taking independent steps 41 with probabilities P(e = +1) = %,
and you have the more symmetrical law:

. x(n) /b e—z/2
limPla< —= < b| = dz.
nToo [ - \/ﬁ :| a \/277T
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Figure 1

The walk is easily simulated. Take a board studded with nails as in
Figure 1 (left) and incline it not too steeply (at 20° say), pour in bird
shot from a little funnel at the top, and look to see what piles up at the
bottom. You should see a scaled approximation to Gauss’s celebrated
bell-shaped curve (2r)~1/2¢=2°/2 as in Figure 1 (right) and that is just
what happens: the individual shot, running down, hits a nail and is
deflected, roughly half the time to the right and half the time to the left,
imitating the random walk to produce a bell-shaped heap at the bottom
in vindication of CLT.

Of course, that is not exactly what happens: the shot is not perfectly
round, the nails are not perfectly placed, perfect statistical independence
does not exist in Nature, and so on. But it is approximately so, which
is why I have placed on the title page the maxim of La Rochefoucauld
(who surely never thought about the standard random walk but has it
just right): That there are certain deceptions, wrong in fact, but which
come so close to the real truth that it would be a mistake of judgment
not to let oneself be fooled by them. Or, to vary the mot: Probability is
only a manner of speaking — not the real thing — but is wonderful how
well it works.

Take for example, Gibbs’s statistical mechanics of which you will get
a glimpse in Chapter 10. It is based, of course, on ideas from Nature,
but the language is probability, and it is successful beyond all dreams.
Or again, take Shannon’s ideas about the quantity of information and
the means (coding) for its faithful communication over a noisy channel —
an equally successful statistical picture of the thing, explained, in part,
in Chapter 9.

Well, you get the idea of what I want to do and will judge at the end
if I succeeded. Einstein said: “Everything should be made as simple as
possible, but not more simple”. I have tried to follow that.
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Guide

Prerequisities

Not much. I need a good working knowledge of the vector spaces R and
C, and of calculus in several variables; also the rudiments of probability
and some knowledge of Lebesgue’s measure and integral on the unit
interval [0,1]. As to the last, I will sketch what I need and ask you
to read up on it if you don't know it already, or just to believe what
I tell you and use it (with care). Here are some books at about the
right level: Munroe [1953], Breiman [1968], and/or the more advanced
Billingsley [1979]. Any of these will tell what is wanted, through the
little sketch in §1.1 is plenty if you fill it in. Besides, some complex
function theory would be nice; it is used sparingly. Ahlfors [1979] is best
for this. As to basic probability, Breiman [1968] is excellent and above
all Feller [1966] which is full of verve, much information, and a variety
of practical examples. In short, only a modest technical machinery is
required so as to keep the probability to the fore.

Exercises
Please do these faithfully. It is the only known way to learn the tricks
of the trade. Some are marked with a star (x) as being unnecessary to
the sequel and/or more difficult. Certain articles and sections are also
starred for similar reasons.

References
References are indicated by a name followed by the year of publication
in square brackets, as in Feller [1950: 33-37]: 1950 indicates the date of
publication, 33-37 gives the paging. These are listed at the end. Things
like Gauss (1800) or Jacobi (1820), with the year in parentheses, are
not precise references, only historical indications: who and very roughly
when.
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Notations/Usage

Positive means > 0, non-negative > 0, and similarly for negative and
non-positive; 1 /z~ is the positive/negative part of the number z; x Ay
is the smaller of z and y, x V y the larger. The symbol ~ means approx-
imately equal, up to something really small or with a small percentage
error, as the context will indicate; < is used similarly. Z is the inte-
gers, Z* the non-negative integers, N the whole numbers (1,2,3, ...),
R the line, C the complex plane. X is a (sample) space; A, B, C and
the like are (mostly) events, i.e. subsets of X. The symbol § denotes a
field (of events) meaning that it is closed under complements indicated
by a prime (), countable unions (U), and countable intersections (N) —
not the common usage but more brief. German (fraktur) is reserved for
these. Boldface x and the like is used, not wholly consistently, for ran-
dom quantities. Italic z and the like is (mostly) for non-random things.
PP is probability. E is expectation as in E(x) = [xdP; the shorthand
E(x, A) is for [, xdP. By C[0,1], C?[0, 00), C*°(R), are designated vari-
ous classes of continuous functions. C7°(R) is the class of smooth, rapidly
vanishing functions. L*(R), L?(R), and so on are the usual Lebesgue
spaces. # is for counting as in #(p < n : p a prime number). 2+ means
a number a little bit more than 2, say; 2— means a number a little
bit less. The natural logarithm to the base e = 2.718+ is written log;
loglog means log(log). The symbol 1k is an indicator function: 1 on K,
0 elsewhere. Traces are denoted by tr.

For those not so familiar with spherical polar coordinates in three
dimensions, I remind you that € R® may be written 2 = |z|e in which
|z| is length and e is the (unit) direction (sin ¢ cos 6, sin ¢ sin6,cos ¢).
Here z3 = |z|cos ¢, 5 < ¢ < § being co-latitude, and 0 < 8 < 2 is
the longitude, measured counter-clockwise in the plane rz = 0 as in the
picture.

\
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